ThatQuiz Prüfungsbibliothek Starten Sie jetzt die Prüfung
Tema 3 Monomis i Polinomis Opera i Simplifica
Beigesteuert von: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) -13x2 + 5x +7
B) 3x4 – 5x – 7
C) x2 – 5x – 7
D) –2x3 – 13x2 – 5x – 7
E) Cap de totes
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) Cap de totes
B) –12x3 + 3x2 – 6x
C) 12x3 - 3x2 + 6x
D) –12x3 + 9x2 – 6x
E) –12x6 + 3x4 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x2 + 5x – 3
B) 2x3 – 3x4 + 5x2 – 3
C) Cap de totes
D) 2x3 – -3x2 - 5x + 3
E) 2x3 – 6x2 + 10x – 9
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) 6x3 - 8x2
B) Cap de totes
C) –1–6x6 + 8x4
D) –6x3 + 8x2
E) –12x3 + 16x2
  • 5. 6x2 – 7x2 + 3x2
A) 2x2
B) 2x4
C) 2x6
D) -2x2
E) Cap de totes
  • 6. Per a sumar Monomis
A) Tenen que ser semblats
B) Es poden sumar tots
C) Sols si coincideix del coeficient
D) Mai es poden sumar
E) Sols es multipliquen
  • 7. Per a multiplicar Monomis
A) Mai es poden multiplicar
B) Sols es poden sumar
C) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
D) Tenen que ser semblats
E) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
  • 8. Dos monomis son Semblats
A) Quan son inversos
B) Quan tenen el mateix exponent
C) Quan tenen identica part literal
D) Quan tenen el mateix signe
E) Quan tenen el mateix coeficien
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Studenten, die diese Prüfung ablegten, nahmen auch :

Erstellt mit ThatQuiz — Eine Mathe-Test-Site für Schüler aller Klassenstufen.