ThatQuiz Prüfungsbibliothek Starten Sie jetzt die Prüfung
Tema 3 Monomis i Polinomis Opera i Simplifica
Beigesteuert von: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) x2 – 5x – 7
B) -13x2 + 5x +7
C) Cap de totes
D) 3x4 – 5x – 7
E) –2x3 – 13x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 9x2 – 6x
B) 12x3 - 3x2 + 6x
C) Cap de totes
D) –12x3 + 3x2 – 6x
E) –12x6 + 3x4 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) Cap de totes
B) 2x3 – -3x2 - 5x + 3
C) 2x3 – 3x2 + 5x – 3
D) 2x3 – 6x2 + 10x – 9
E) 2x3 – 3x4 + 5x2 – 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) Cap de totes
B) –1–6x6 + 8x4
C) –6x3 + 8x2
D) 6x3 - 8x2
E) –12x3 + 16x2
  • 5. 6x2 – 7x2 + 3x2
A) -2x2
B) 2x4
C) 2x6
D) Cap de totes
E) 2x2
  • 6. Per a sumar Monomis
A) Es poden sumar tots
B) Mai es poden sumar
C) Tenen que ser semblats
D) Sols si coincideix del coeficient
E) Sols es multipliquen
  • 7. Per a multiplicar Monomis
A) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
B) Tenen que ser semblats
C) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
D) Mai es poden multiplicar
E) Sols es poden sumar
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix signe
B) Quan tenen el mateix coeficien
C) Quan tenen el mateix exponent
D) Quan son inversos
E) Quan tenen identica part literal
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Studenten, die diese Prüfung ablegten, nahmen auch :

Erstellt mit ThatQuiz — Eine Mathe-Test-Site für Schüler aller Klassenstufen.