A) -1,5 ; 0 ; 1,5 B) -1,5 ; 0 ;1,5 ;3 C) -1,5 ; 1,5 ; 3 D) no posee raíces reales
A) es una regla de cálculo de poca utilidad B) sirve para dividir un polinomio cualquiera entre otra de la forma x - a C) es una forma más cómoda de realizar una división
A) tendrá siempre dos raíces distintas B) siempre es producto de dos polinomios de primer grado C) puede no tener raíces reales D) siempre puede descomponerse en factores
A) 1 ; 2 ; 3 B) -2 ; -1 ; 3 C) -3 ; -2 ; -1 D) 1 ; 2 ; 5
A) p(x) es divisible entre (x + 2) B) -2 es raíz de p C) p(2) = 0
A) el resto de la división de p(x) entre (x - 3) es 0 B) p(-3) = 0 C) -3 es raíz de p
A) el valor numérico de f(x) en x = 7 es 0 B) f(-7) = 0 C) f(x) es divisible entre (x - 7)
A) 39 B) -87 C) -39
A) q(0) = 0 B) q(a) = 0 C) q(-a) = 0
A) 9x² – 6x + 4 B) 9x² – 12x + 4 C) 9x² – 12x – 4
A) Pude tener sus tres raíces imaginarias B) Como máximo puede tener tres raíces. C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Puede no tener raíces reales. B) Tendrá siempre dos raíces reales distintas. C) Posee como máximo tres raíces reales distintas.
A) 9x² + 6x + 2 B) 3x² + 6x + 1 C) 9x² + 6x + 1 D) 9x² + 1
A) x² (x – 2) B) 2x (x² – 1) C) 2x (x – 1)
A) 6x²-3x+1 B) 9x²-6x+1 C) 9x²+1 D) 9x²-1
A) una recta B) una parabola C) una curva |