A) no posee raíces reales B) -1,5 ; 0 ;1,5 ;3 C) -1,5 ; 1,5 ; 3 D) -1,5 ; 0 ; 1,5
A) sirve para dividir un polinomio cualquiera entre otra de la forma x - a B) es una regla de cálculo de poca utilidad C) es una forma más cómoda de realizar una división
A) tendrá siempre dos raíces distintas B) siempre puede descomponerse en factores C) puede no tener raíces reales D) siempre es producto de dos polinomios de primer grado
A) -3 ; -2 ; -1 B) 1 ; 2 ; 3 C) -2 ; -1 ; 3 D) 1 ; 2 ; 5
A) -2 es raíz de p B) p(x) es divisible entre (x + 2) C) p(2) = 0
A) p(-3) = 0 B) -3 es raíz de p C) el resto de la división de p(x) entre (x - 3) es 0
A) el valor numérico de f(x) en x = 7 es 0 B) f(x) es divisible entre (x - 7) C) f(-7) = 0
A) -39 B) 39 C) -87
A) q(0) = 0 B) q(a) = 0 C) q(-a) = 0
A) 9x² – 12x – 4 B) 9x² – 6x + 4 C) 9x² – 12x + 4
A) Como máximo puede tener tres raíces. B) Si no tiene una raíz entera, no sabemos descomponerlo en factores. C) Pude tener sus tres raíces imaginarias
A) Puede no tener raíces reales. B) Posee como máximo tres raíces reales distintas. C) Tendrá siempre dos raíces reales distintas.
A) 3x² + 6x + 1 B) 9x² + 6x + 1 C) 9x² + 6x + 2 D) 9x² + 1
A) 2x (x – 1) B) 2x (x² – 1) C) x² (x – 2)
A) 9x²-6x+1 B) 9x²+1 C) 9x²-1 D) 6x²-3x+1
A) una recta B) una parabola C) una curva |