- 1. Resolver: x – (2x + 1) < 8 – (3x + 3)
A) ]-∞,1[ B) ]-13,+∞[ C) ]-∞,3[ D) ]15,+∞[
- 2. Resolver: (5 -3x) – ( -4x +6) > (8x + 11) – (3x - 6)
A) ]-9,+∞[ B) ]-∞,-9/2[ C) ]-∞,-9[ D) ]-9/2,+∞[
- 3. Resolver:15x + (– 6x + 5) –2 –(–x + 3) ≥ – (7x + 23) – x + (3 –2x)
A) [-1,+∞[ B) ]-∞,-2] C) [1,+∞[ D) ]-∞,2]
- 4. Resolver:16x – [ 3x – (6 – 9x)] > 30x + [ – (3x + 2) – (x + 3)]
A) ]-∞,-2[ B) ]-∞,+1/2[ C) ]2,-∞[ D) ]1/2,+∞[
- 5. La inecuación: 6x-4-2x≥4x+3 es
A) ]-∞,1[ B) [1,+∞[ C) ]-∞,-1[ D) ∅
- 6. Resolver: 9x – (5x + 1) – {2 + 8x – (7x – 5)} +9x ≥ 0
A) ]-∞,-2] B) [-2,+∞[ C) ]-∞,2/3] D) [2/3,+∞[
- 7. Resolver: – {3x + 8 – [ – 15 +6x – (–3x +2) – (5x + 4)] – 29} ≥ – 5
A) [1/2,+∞[ B) ]-∞,-1] C) [-1/2,+∞[ D) [-1,∞[
- 8. El intervalo ]-∞,-5/7] escrito en notación por comprensión es
A) {x∈R,x<-5/7} B) {x∈R,x≥-5/7} C) {x∈R,x≤-5/7} D) {x∈R,x>-5/7}
- 9. Resolver: 15x + (–6x + 5) –2 –(–x + 3) ≥ – (7x + 23) – x + (3 – 2x)
A) [-1,∞[ B) [-1/2,+∞[ C) [1/2,+∞[ D) ]-∞,-1]
- 10. Resolver: – {3x + 8 –[ –15 + 6x – (– 3x + 2) – (5x + 4)] – 29} ≥ – 5
A) ]-∞,-5] B) ]-∞,-3] C) [-1,∞[ D) [-5,∞[
|