ThatQuiz Bilduma Saia zaitez
Tema 3 Monomis i Polinomis Opera i Simplifica
Hauen laguntzarekin: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) –2x3 – 13x2 – 5x – 7
B) Cap de totes
C) -13x2 + 5x +7
D) 3x4 – 5x – 7
E) x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 9x2 – 6x
B) Cap de totes
C) –12x3 + 3x2 – 6x
D) –12x6 + 3x4 – 6x
E) 12x3 - 3x2 + 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x4 + 5x2 – 3
B) Cap de totes
C) 2x3 – 3x2 + 5x – 3
D) 2x3 – 6x2 + 10x – 9
E) 2x3 – -3x2 - 5x + 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) Cap de totes
B) –1–6x6 + 8x4
C) 6x3 - 8x2
D) –6x3 + 8x2
E) –12x3 + 16x2
  • 5. 6x2 – 7x2 + 3x2
A) Cap de totes
B) -2x2
C) 2x4
D) 2x6
E) 2x2
  • 6. Per a sumar Monomis
A) Tenen que ser semblats
B) Es poden sumar tots
C) Sols es multipliquen
D) Sols si coincideix del coeficient
E) Mai es poden sumar
  • 7. Per a multiplicar Monomis
A) Mai es poden multiplicar
B) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
C) Tenen que ser semblats
D) Sols es poden sumar
E) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix coeficien
B) Quan tenen el mateix signe
C) Quan tenen el mateix exponent
D) Quan son inversos
E) Quan tenen identica part literal
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Intereseko beste azterketa batzuk :

Azterketa honekin sortua That Quiz — matematika gunea.