A) -1,5 ; 0 ;1,5 ;3 B) -1,5 ; 1,5 ; 3 C) no posee raíces reales D) -1,5 ; 0 ; 1,5
A) es una regla de cálculo de poca utilidad B) es una forma más cómoda de realizar una división C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) tendrá siempre dos raíces distintas B) siempre puede descomponerse en factores C) siempre es producto de dos polinomios de primer grado D) puede no tener raíces reales
A) -3 ; -2 ; -1 B) 1 ; 2 ; 3 C) 1 ; 2 ; 5 D) -2 ; -1 ; 3
A) p(2) = 0 B) -2 es raíz de p C) p(x) es divisible entre (x + 2)
A) el resto de la división de p(x) entre (x - 3) es 0 B) -3 es raíz de p C) p(-3) = 0
A) el valor numérico de f(x) en x = 7 es 0 B) f(x) es divisible entre (x - 7) C) f(-7) = 0
A) 39 B) -39 C) -87
A) q(0) = 0 B) q(-a) = 0 C) q(a) = 0
A) 9x² – 12x + 4 B) 9x² – 12x – 4 C) 9x² – 6x + 4
A) Si no tiene una raíz entera, no sabemos descomponerlo en factores. B) Como máximo puede tener tres raíces. C) Pude tener sus tres raíces imaginarias
A) Posee como máximo tres raíces reales distintas. B) Tendrá siempre dos raíces reales distintas. C) Puede no tener raíces reales.
A) 9x² + 1 B) 3x² + 6x + 1 C) 9x² + 6x + 2 D) 9x² + 6x + 1
A) x² (x – 2) B) 2x (x² – 1) C) 2x (x – 1) |