A) -1,5 ; 0 ; 1,5 B) -1,5 ; 0 ;1,5 ;3 C) no posee raíces reales D) -1,5 ; 1,5 ; 3
A) sirve para dividir un polinomio cualquiera entre otra de la forma x - a B) es una forma más cómoda de realizar una división C) es una regla de cálculo de poca utilidad
A) siempre es producto de dos polinomios de primer grado B) tendrá siempre dos raíces distintas C) siempre puede descomponerse en factores D) puede no tener raíces reales
A) 1 ; 2 ; 5 B) -3 ; -2 ; -1 C) -2 ; -1 ; 3 D) 1 ; 2 ; 3
A) p(2) = 0 B) -2 es raíz de p C) p(x) es divisible entre (x + 2)
A) -3 es raíz de p B) p(-3) = 0 C) el resto de la división de p(x) entre (x - 3) es 0
A) el valor numérico de f(x) en x = 7 es 0 B) f(-7) = 0 C) f(x) es divisible entre (x - 7)
A) 39 B) -87 C) -39
A) q(a) = 0 B) q(-a) = 0 C) q(0) = 0
A) 9x² – 12x + 4 B) 9x² – 6x + 4 C) 9x² – 12x – 4
A) Si no tiene una raíz entera, no sabemos descomponerlo en factores. B) Como máximo puede tener tres raíces. C) Pude tener sus tres raíces imaginarias
A) Puede no tener raíces reales. B) Tendrá siempre dos raíces reales distintas. C) Posee como máximo tres raíces reales distintas.
A) 3x² + 6x + 1 B) 9x² + 6x + 2 C) 9x² + 1 D) 9x² + 6x + 1
A) x² (x – 2) B) 2x (x² – 1) C) 2x (x – 1) |