Teoria dos grupos - Teste
  • 1. A teoria dos grupos é um ramo da álgebra abstrata que se ocupa do estudo de estruturas matemáticas denominadas grupos. Um grupo é um conjunto equipado com uma operação que combina dois elementos quaisquer para produzir um terceiro elemento de tal forma que certas propriedades são satisfeitas, tais como fecho, associatividade, elemento de identidade e invertibilidade. A teoria dos grupos tem aplicações em vários domínios, incluindo a matemática, a física, a química e a informática. Fornece uma estrutura para compreender a simetria, as transformações e os padrões, e tem implicações profundas no estudo de grupos de simetria, representações de grupos e acções de grupo.

    O que é o elemento de identidade de um grupo?
A) Um elemento que é o mais pequeno do grupo.
B) Um elemento do grupo tal que, quando combinado com qualquer outro elemento, o resultado é esse outro elemento.
C) Um número par no grupo.
D) Um elemento que é o maior do grupo.
  • 2. O que é que significa uma operação de grupo ser associativa?
A) Para todos os elementos a, b, c do grupo, (a * b) * c = a * (b * c).
B) Para todos os elementos a, b do grupo, a = a * b.
C) Para todos os elementos a, b, c do grupo, (a + b) * c = a * (b * c).
D) Para todos os elementos a, b do grupo, a * b = b * a.
  • 3. O que é o teorema de Lagrange na teoria dos grupos?
A) O maior elemento de um grupo.
B) Um teorema sobre álgebra linear.
C) Num grupo finito, a ordem de um subgrupo divide a ordem do grupo.
D) A soma de todos os elementos de um grupo é igual a zero.
  • 4. O que é um grupo abeliano?
A) Um grupo sem elemento de identidade.
B) Um grupo com apenas um elemento.
C) Um grupo em que a operação é definida apenas para números ímpares.
D) Um grupo em que a operação de grupo é comutativa.
  • 5. O que é que significa um grupo ser cíclico?
A) Um grupo em que os elementos podem ter múltiplos inversos.
B) Um grupo sem elemento de identidade.
C) Um grupo sem operação definida.
D) Um grupo gerado por um único elemento.
  • 6. Qual é a definição de centro de um grupo?
A) O conjunto de elementos que comutam com todos os elementos do grupo.
B) O conjunto dos inversos do grupo.
C) O maior elemento do grupo.
D) A soma de todos os elementos de um grupo.
  • 7. Qual é a definição de ordem de um grupo?
A) A soma de todos os elementos do grupo.
B) O maior elemento do grupo.
C) O número de elementos no grupo.
D) O elemento mais pequeno do grupo.
  • 8. Qual é a definição de homomorfismo entre dois grupos?
A) Uma função entre dois grupos que preserva a estrutura do grupo.
B) O maior elemento do grupo.
C) O elemento mais pequeno do grupo.
D) A soma de todos os elementos de um grupo.
  • 9. O que é que significa dois grupos serem isomorfos?
A) O maior elemento do grupo é idêntico.
B) O elemento mais pequeno dos grupos é o mesmo.
C) A soma de todos os elementos de um grupo é a mesma.
D) Os grupos têm a mesma estrutura, mesmo que os elementos possam ser rotulados de forma diferente.
  • 10. O que é o teorema de Cayley na teoria dos grupos?
A) Todos os grupos são isomorfos a um grupo de permutação.
B) Um teorema sobre álgebra linear.
C) O maior elemento de um grupo.
D) A soma de todos os elementos de um grupo.
  • 11. O que é um grupo de permutação?
A) Um grupo em que os elementos são permutações de um conjunto e a operação de grupo é a composição de permutações.
B) Um grupo com apenas um elemento.
C) Um grupo de números inteiros.
D) Um grupo sem elemento de identidade.
  • 12. Qual é a definição do subgrupo comutador?
A) A soma de todos os elementos de um grupo.
B) O subgrupo gerado por todos os comutadores.
C) Um grupo sem elemento de identidade.
D) O maior elemento do grupo.
  • 13. Qual é a definição do grupo quociente?
A) A soma de todos os elementos de um grupo.
B) O grupo dos cosets de um subgrupo normal.
C) O maior elemento do grupo.
D) Um grupo sem elemento de identidade.
  • 14. Qual é a definição de um automorfismo de um grupo?
A) Um grupo sem elemento de identidade.
B) Um grupo com apenas um elemento.
C) Um grupo de números inteiros.
D) Um isomorfismo de um grupo para ele próprio.
  • 15. A que é que o termo "classe de conjugação" se refere na teoria dos grupos?
A) Um grupo sem elemento de identidade.
B) Um conjunto de elementos que são todos conjugados entre si.
C) Um grupo de números inteiros.
D) Um grupo com apenas um elemento.
  • 16. Qual é a definição de um grupo alternado?
A) Um grupo de números inteiros.
B) Um grupo com apenas um elemento.
C) O subgrupo do grupo simétrico que consiste em permutações pares.
D) Um grupo sem elemento de identidade.
  • 17. Qual é a definição de um grupo diedro?
A) Um grupo sem elemento de identidade.
B) Um grupo de números inteiros.
C) Um grupo com apenas um elemento.
D) O grupo de simetrias de um polígono regular.
  • 18. Qual é a definição de um grupo simétrico?
A) Um grupo sem elemento de identidade.
B) Um grupo com apenas um elemento.
C) Um grupo de números inteiros.
D) O grupo de todas as permutações de um conjunto.
Criado com That Quiz — onde podemos encontrar exercícios de matemática e de outras disciplinas.