All about Transformations
 Transformations are changes  in position or orientation of a figure.  Types of transformations include translations - slides along a straight line, reflections - flips over a line of reflection, rotations - turns on a fixed point.  Transformations arechanges in position or orientation of a figureslides along a straight lineflips overs a line of reflectionturns around a fixed point Transformations are changes  in position or orientation of a figure.  Types of transformations include translations - slides along a straight line, reflections - flips over a line of reflection, rotations - turns on a fixed point.  Translations arechanges in position or orientation of a figureslides along a straight lineflips overs a line of reflectionturns around a fixed point Transformations are changes  in position or orientation of a figure.  Types of transformations include translations - slides along a straight line, reflections - flips over a line of reflection, rotations - turns on a fixed point.  Reflections arechanges in position or orientation of a figureslides along a straight lineflips overs a line of reflectionturns around a fixed point Transformations are changes  in position or orientation of a figure.  Types of transformations include translations - slides along a straight line, reflections - flips over a line of reflection, rotations - turns on a fixed point.  Rotations arechanges in position or orientation of a figureslides along a straight lineflips overs a line of reflectionturns around a fixed point scale factordilationscoordinatesDilations are  transformations that change the size but not the shape.  This is done by multiplyingthe coordinates of each point by the same number. This number is called a scale factor. Changes is size but not shape are called scale factordilationscoordinatesDilations are  transformations that change the size but not the shape.  This is done by multiplyingthe coordinates of each point by the same number. This number is called a scale factor. The number each coordinate is multiplied by is called a(n) translationdilation reflectionrotation reflectiontranslationrotationdilation reflectiontranslationrotationdilation Give the coordinates for a reflection over the x-axis.A(4, -3) A'(       ,       ) Give the coordinates for a translation using the following rule:  (x - 5, y + 4)W(3, -7)W'(       ,       ) Give the coordinates of the point when dilated using a scale factor of 6.B(-2, 0)B'(       ,       ) Give the coordinates for the triangle whenreflected over the y-axis.A(6, -2)B(5, -9)C(8, -4)A'(        ,        )B'(        ,        )C'(        ,        ) rotation  Pre ImageAn operation that maps (moves) a preimage to  animage is a transformation.  This transformation is a:reflectiontranslationImage Pre Image?This is a tranSLation (SLide) to the right.The NEW figure is the image.Image? This is a tranSLation (SLide) to the left.The NEW figure is the image.Image?Pre Image? If the preimage has point AAThe image has corresponding (matching) point  A'BCA'B'?C'? If the preimage has point A, the image has point A'.A' is read as "A prime"APREIMAGE?BCA'IMAGE?B'C' If the                 has point A, the image has point A'.A' is read as "A           "preimagepreimageC?primeABimageC'A'?B'? 2-24-42-24-46-6ACBC'A'B'Coordinate notationshows this translation(x,y)→(x+2, y-5)This means thepreimage moves2 units rightand 5 units downto form the image 2-24-46-62-24-46-68-810-10(x,y)→(x+2, y-7)(x,y)→(x-2, y+7)(x,y)→(x-2, y-7)(x,y)→(x+2, y+7)Which coordinatenotation is shown?A'AB'C'BC 2-24-46-62-24-46-68-810-10(x,y)→(x+2, y-7)(x,y)→(x-2, y+7)(x,y)→(x-2, y-7)(x,y)→(x+2, y+7)Which coordinatenotation is shown?AA'BCB'C' 2-24-46-62-24-46-68-810-10(x,y)→(x+2, y-7)(x,y)→(x-2, y+7)(x,y)→(x-2, y-7)(x,y)→(x+2, y+7)Which coordinatenotation is shown?AA'CBB'C' 2-24-46-62-24-46-68-810-10(x,y)→(x+2, y-7)(x,y)→(x-2, y+7)(x,y)→(x-2, y-7)(x,y)→(x+2, y+7)Which coordinatenotation is shown?A'AC'B'BC RECAP Theprocessof mapping(moving)apreimageonto animageis called a:preimagetransformationprime coordinate notation (x,y)→(x+4,y-3)What type of notationdescribes this translation(slide)?primecoordinateimagepreimage #units to the(x,y)→(x+4,y-3)This coordinate notationshows a translationleftorrightand         units#upordown #units to the(x,y)→(x-2, y+7)This coordinate notationshows a translationleftorrightand         units#upordown Final Question............. Use the coordinate notation to  find thecoordinates of the image. (Let x=5 and y=1 and solve)(5,1)→(   -2,   +7)(5,1)→(       ,      )(x,y)→(x-2, y+7)Preimage5?Image1? TheEnd
Created with That Quiz — the site for test creation and grading in math and other subjects.