Using Congruence and CPCTC
 1. Tell if the highlighted statement is false or if it's true and why.                   AT ≅ UC False True; ∆'s ≅ by SAS, and AT ≅ UC by CPCTC True; ∆'s ≅ by ASA, and AT ≅ UC by def. ≅ sides True; ∆'s ≅ by SAS, and AT ≅ UC by SSSTAEPUC 2. Tell if the highlighted statement    is true or false and why (if it's true).     ∡T ≅ ∡U True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by CPCTC True; ∆'s ≅ by SSS, and AT ≅ UC by SAS False True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by third ∡ thm.TAEPUC 3. Tell if (and why) the highlighted statement is true.∆'s ≅ by SSS, thus true by CPCTC∆'s ≅ by SSS, thus true by congruent angles ∆'s  ≅ by SAS , thus true by CPCTC∆'s are not ≅, thus the statement is false∡A ≅ ∡BACBD 4. Determine the postulate that proves why the triangles are congruent.Congruent by:HL?SSSCongruentby: SAS?ASACongruent by:AAS? 5.  What does CPCTC stand for?Corresponding Parts of Corresponding Triangles      are CongruentCongruent Parts of Congruent Triangles are    CorrespondingCongruent Parts of Corresponding Triangles    are CongruentCorresponding Parts of Congruent Triangles     are Congruent 6.  In two triangles, ∡C≅∡T and CA≅TR.       Assume  that ∆CAN≅∆TRY.  What other parts      do we know are congruent by using CPCTC?  CA≅TY∡N≅∡Y*Check ALL that apply.*∡A≅∡RAN≅RY 7.  In two triangles, ∡R≅∡E and AM≅LG.       Assume that ∆ARM≅∆LEG.  What other parts     do we know are congruent by using CPCTC?  ∡A≅∡LRA≅EL*Check ALL that apply.*∡G≅∡RMR≅LE 8.  Drag the correct justifications to match with      the statements in the proof. 2. ∡HEF≅∡HGD; ∡HFE≅∡HDG        2. 4. HD≅HF                                  4.1. EF∕∕DG; EF≅GD                     1. Given3. ΔEHF ≅ ΔGHD                         3.Given: EF∕∕DG;  EF ≅ GDProve: HD ≅ HFDEAlternate Interior Angles?Congruent by AAS ≅?Congruent by CPCTC?HFG 9.  Drag the correct justifications to match with      the statements in the proof.1. H is the midpoint of EG & FD   1. Given    EF≅GD             3. ΔEHF ≅ ΔGHD                       3.4. ∡HEF≅∡HGD                        4.2. EH≅GH; FH≅DH                     2. Given: H is the midpoint           of EG & FD; EF ≅ GDProve: ∡HEF ≅ ∡HGDDEdefinition of midpoint?Congruent by CPCTC?Congruent by SSS ≅ ?HFG 10.  What could you use to prove ∡A ≅ ∡Z?HL≅ and CPCTCRight Trianglesdefinition of an     acute angleAAA≅ and CPCTC
Students who took this test also took :

Created with That Quiz — where a math practice test is always one click away.