Using Congruence and CPCTC
1. Tell if the highlighted statement 
is false or if it's true and why.                   AT ≅ UC
 False
 True; ∆'s ≅ by SAS, and AT ≅ UC by CPCTC
 True; ∆'s ≅ by ASA, and AT ≅ UC by def. ≅ sides
 True; ∆'s ≅ by SAS, and AT ≅ UC by SSS
T
A
E
P
U
C
2. Tell if the highlighted statement    is true or false and why (if it's true).     ∡T ≅ ∡U
 True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by CPCTC
 True; ∆'s ≅ by SSS, and AT ≅ UC by SAS
 False
 True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by third ∡ thm.
T
A
E
P
U
C
3. Tell if (and why) the highlighted statement is true.

∆'s ≅ by SSS, thus true by CPCTC
∆'s ≅ by SSS, thus true by congruent angles
 ∆'s  ≅ by SAS , thus true by CPCTC
∆'s are not ≅, thus the statement is false
∡A ≅ ∡B
A
C
B
D
4. Determine the postulate that proves why the 
triangles are congruent.
Congruent 
by:
HL
?
SSS
Congruent
by: 
SAS
?
ASA
Congruent by:
AAS
?
5.  What does CPCTC stand for?
Corresponding Parts of Corresponding Triangles 
     are Congruent
Congruent Parts of Congruent Triangles are
    Corresponding
Congruent Parts of Corresponding Triangles
    are Congruent
Corresponding Parts of Congruent Triangles 
    are Congruent
6.  In two triangles, ∡C≅∡T and CA≅TR.  
     Assume  that ∆CAN≅∆TRY.  What other parts 
     do we know are congruent by using CPCTC?  
CA≅TY
∡N≅∡Y
*Check ALL that apply.*
∡A≅∡R
AN≅RY
7.  In two triangles, ∡R≅∡E and AM≅LG.       Assume that ∆ARM≅∆LEG.  What other parts     do we know are congruent by using CPCTC?  
∡A≅∡L
RA≅EL
*Check ALL that apply.*
∡G≅∡R
MR≅LE
8.  Drag the correct justifications to match with 
     the statements in the proof. 
2. ∡HEF≅∡HGD; ∡HFE≅∡HDG        2. 
4. HD≅HF                                  4.
1. EF∕∕DG; EF≅GD                     1. Given
3. ΔEHF ≅ ΔGHD                         3.
Given: EF∕∕DG;  EF ≅ GD
Prove: HD ≅ HF
D
E
Alternate Interior Angles
?
Congruent by AAS ≅
?
Congruent by CPCTC
?
H
F
G
9.  Drag the correct justifications to match with 
     the statements in the proof.
1. H is the midpoint of EG & FD   1. Given    EF≅GD             
3. ΔEHF ≅ ΔGHD                       3.
4. ∡HEF≅∡HGD                        4.
2. EH≅GH; FH≅DH                     2. 
Given: H is the midpoint           of EG & FD; EF ≅ GD
Prove: ∡HEF ≅ ∡HGD
D
E
definition of midpoint
?
Congruent by CPCTC
?
Congruent by SSS ≅ 
?
H
F
G
10.  What could you use to prove ∡A ≅ ∡Z?
HL≅ and CPCTC
Right Triangles
definition of an 
    acute angle
AAA≅ and CPCTC
Students who took this test also took :

Created with That Quiz — where a math practice test is always one click away.