Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) 3x4 – 5x – 7
B) x2 – 5x – 7
C) Cap de totes
D) -13x2 + 5x +7
E) –2x3 – 13x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x6 + 3x4 – 6x
B) –12x3 + 3x2 – 6x
C) 12x3 - 3x2 + 6x
D) Cap de totes
E) –12x3 + 9x2 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – -3x2 - 5x + 3
B) 2x3 – 6x2 + 10x – 9
C) 2x3 – 3x2 + 5x – 3
D) Cap de totes
E) 2x3 – 3x4 + 5x2 – 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) –12x3 + 16x2
C) Cap de totes
D) –1–6x6 + 8x4
E) 6x3 - 8x2
  • 5. 6x2 – 7x2 + 3x2
A) 2x2
B) 2x6
C) Cap de totes
D) 2x4
E) -2x2
  • 6. Per a sumar Monomis
A) Mai es poden sumar
B) Es poden sumar tots
C) Tenen que ser semblats
D) Sols si coincideix del coeficient
E) Sols es multipliquen
  • 7. Per a multiplicar Monomis
A) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
B) Sols es poden sumar
C) Mai es poden multiplicar
D) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
E) Tenen que ser semblats
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix coeficien
B) Quan son inversos
C) Quan tenen el mateix signe
D) Quan tenen identica part literal
E) Quan tenen el mateix exponent
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
参加了这次测试的学生也参加了 :

创建 That Quiz — 针对各年级学生的数学测试网站.