A) no posee raíces reales B) -1,5 ; 0 ; 1,5 C) -1,5 ; 1,5 ; 3 D) -1,5 ; 0 ;1,5 ;3
A) es una regla de cálculo de poca utilidad B) sirve para dividir un polinomio cualquiera entre otra de la forma x - a C) es una forma más cómoda de realizar una división
A) puede no tener raíces reales B) siempre puede descomponerse en factores C) siempre es producto de dos polinomios de primer grado D) tendrá siempre dos raíces distintas
A) -3 ; -2 ; -1 B) 1 ; 2 ; 5 C) 1 ; 2 ; 3 D) -2 ; -1 ; 3
A) -2 es raíz de p B) p(x) es divisible entre (x + 2) C) p(2) = 0
A) el resto de la división de p(x) entre (x - 3) es 0 B) -3 es raíz de p C) p(-3) = 0
A) f(x) es divisible entre (x - 7) B) el valor numérico de f(x) en x = 7 es 0 C) f(-7) = 0
A) -39 B) -87 C) 39
A) q(a) = 0 B) q(-a) = 0 C) q(0) = 0
A) 9x² – 6x + 4 B) 9x² – 12x – 4 C) 9x² – 12x + 4
A) Como máximo puede tener tres raíces. B) Si no tiene una raíz entera, no sabemos descomponerlo en factores. C) Pude tener sus tres raíces imaginarias
A) Puede no tener raíces reales. B) Posee como máximo tres raíces reales distintas. C) Tendrá siempre dos raíces reales distintas.
A) 3x² + 6x + 1 B) 9x² + 6x + 1 C) 9x² + 6x + 2 D) 9x² + 1
A) 2x (x² – 1) B) 2x (x – 1) C) x² (x – 2) |