A) Aparato que transforma energía mecánica en energía eléctrica en base a corriente continua B) Aparato que produce diferencia de potencial por fluido de electrones en diferentes direcciones C) Aparato que produce flujo de electrones bidireccional D) Aparato que genera tensión por midificación en su campo magnético E) Aparato que transforma energía mecánica en energía eléctrica en base a corrientes alterna y directa
A) La energía que contiene el electroimán permite el movimiento de la espira que facilita la circulación de electrones B) La electricidad es producida sin fuente de energía, únicamente en presencia de un electroimán C) Es producido flujo de electrones en sentido unidireccional D) El cambio de configuración del campo magnético genera voltaje E) La rotación de una espuira modifica el campo magnético
A) A mayor número de espiras menor es la resistencia opuesta al imán B) La sumatoria de los campos correspondientes a todas las espiras de un solenoide es igual a la energía producida C) La energía de la última espira en un solenoide es inversamente proporcional al voltaje producido D) El número de "vueltas" en un solenoide es inversamente proporcional al voltaje producido E) El campo magnético es ascendentes en las espiras que están próximas al magneto
A) Producción de tensión por estímulo eléctrico correspondiente a las cargas de un imán B) Los dominios magnéticos presentan resistencia al movimiento del electroimán C) El campo magnético de una bobina es opuesto al campo magnético de otras bobinas cercanas D) La fuente de energía está relacionada directamente con la carga eléctrica de un imán E) Las espiras en una bobina es elemento inducido
A) voltaje primario por número de espiras en t. primario es igual al voltaje secundario por número de espiras en el t. secundario B) número de espiras en t. primario C) el voltaje secundario entre número de espiras en el t. secundario es igual al voltaje primario por número de espiras en t. primario es igual D) voltaje primario entre número de espiras en t. primario es igual al voltaje secundario entre número de espiras en el t. secundario E) voltaje primario entre número de espiras en el t. secundario es igual al voltaje secundario entre número de espiras en t. primario
A) 0,12 A B) 1200 A C) 1,2 A D) 120 A E) 0,21 A
A) 0,12 A - 12,0 V B) 1,2 A - 120V C) 0,21 A - 120V D) 1,2 A - 240 V E) 12A - 12,0V
A) metros cuadrados sobre campo magnético B) carga eléctrica por tiempo C) campo magnético para voltaje D) Voltaje por campo magnético E) Campo magnético por superficie
A) baterías - tranformadores B) transformadores - convertidores C) baterías - convertidores D) alternadores - distribuidores E) alternadores - dínamos
A) El campo magnético determina la cantidad de diferencia de potencial presente en un conductor B) El campo magnético de dos dominios iguales presenta predominio de fuerzas de cohesión, generando por tanto electricidad C) El campo magnético resulta ser distorsión de la distorsión por ser efecto del campo eléctrico D) El campo eletromagnético resulta de la relación inversa proporcional del campo eléctrico para el campo magnético E) El campo eléctrico resulta ser distorsión de la distorsión por ser efecto del campo magnético
A) exogena B) magnética C) extrínseca D) homogenea E) endógena
A) vectores dimensionales B) líneas de campo C) temperatura D) magnetismo E) vacío
A) magnetismo - electricidad B) magnetismo - temperatura C) magnetismo - gravedad D) gravedad - intensidad E) calor - electricidad
A) ser el efecto del campo eléctrico B) producir el espacio electromagnético C) producir el campo eléctrico D) el campo electromagnético modifica al campo eléctrico y este al campo magnético E) presentar vectores reales por donde circulan electrones
A) presentar fuerzas de repulsión B) generar fuerza gravitacional C) presentar fuerzas de cohesión D) generar energía magnética E) presentar energía eléctrica
A) metro/cm(EXP)3 B) metros/seg C) Maxwell . Weber D) Teslas . Weber E) amperios/ metro
A) proporcional B) Idéntica C) inversamente proporcional D) opuesta E) duplicada
A) acelerar el campo magnético al interior del campo eléctrico B) acelerar el campo eléctrico al interior del campo gravitacional C) Inducir campo magnético en un campo eléctrico D) Modificar la configuración del campo electromagnético E) inducir campo eléctrico en un campo electromagnético
A) masa x coulombio B) ohmio x amperio C) intensidad x longitud D) longitud / weber E) potencia por intensidad
A) densidad B) diferencia de potencial C) intensidad D) Kilogramo E) metro
A) Diferencia de potencial, tensión o voltaje B) Diferencia de potencial unireccional (negativo a positivo) C) Intensidad de electrones unidireccional (positivo a negativo) D) Circulación de electrones que permite cerrar un circuito para la producción de electricidad E) Tensión unidireccional en una FEM
A) acumulador B) FEM C) batería D) alternador E) pila
A) I= E/r + R B) I=v/r C) I= E/r + P D) I= R + r /E E) I=R x V
A) vectores indicadores de la fuerza de gravedad B) La fuerza proyectada en dirtección perpendicular al dedo índice C) Líneas de campo de un cuerpo con carga negativa D) sistemas de cristalización de elementos E) La energía exógena de un cuerpo con carga negativa
A) Electricidad y gravedad B) Intensidad y resistencia C) Frecuencia e intensidad D) magnitudes de potencia y voltaje E) fuerzas de cohesión y repulsión
A) bobina B) batería C) dínamo D) alternador E) FEM
A) 87,64 v B) 87,63 w C) 100 W D) 220 w E) 110 V
A) 8,5 A B) 35,4 w C) 62,5 w D) 12,5 v E) 390,5 C
A) 350000 w B) 425,2 Kw C) 148,7 A D) 354 ,5 Kw E) 357 v
A) 4 x 10(EXP)5 w B) 5 x 10 (EXP)6 A C) 500000 v D) 4 x 10(EXP)5 A E) 7,5 x 10 (EXP) w |