ThatQuiz Bibliothèque de tests Faire ce test maintenant
Tema 3 Monomis i Polinomis Opera i Simplifica
Contribué par: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) –2x3 – 13x2 – 5x – 7
B) -13x2 + 5x +7
C) 3x4 – 5x – 7
D) Cap de totes
E) x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x6 + 3x4 – 6x
B) –12x3 + 9x2 – 6x
C) –12x3 + 3x2 – 6x
D) Cap de totes
E) 12x3 - 3x2 + 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 6x2 + 10x – 9
B) 2x3 – 3x4 + 5x2 – 3
C) 2x3 – -3x2 - 5x + 3
D) Cap de totes
E) 2x3 – 3x2 + 5x – 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –12x3 + 16x2
B) Cap de totes
C) –6x3 + 8x2
D) 6x3 - 8x2
E) –1–6x6 + 8x4
  • 5. 6x2 – 7x2 + 3x2
A) Cap de totes
B) 2x6
C) -2x2
D) 2x2
E) 2x4
  • 6. Per a sumar Monomis
A) Sols es multipliquen
B) Tenen que ser semblats
C) Es poden sumar tots
D) Mai es poden sumar
E) Sols si coincideix del coeficient
  • 7. Per a multiplicar Monomis
A) Mai es poden multiplicar
B) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
C) Sols es poden sumar
D) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
E) Tenen que ser semblats
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix signe
B) Quan tenen el mateix exponent
C) Quan tenen el mateix coeficien
D) Quan tenen identica part literal
E) Quan son inversos
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Les étudiants ayant complété ce test ont aussi complété :

Créé avec That Quiz — un site de tests de mathématiques pour des étudiants de tous les niveaux d'études.