Distance Formula
 The Distance Formulacan be used to find the distance between two points.d = (x1, y1)(x2 - x1)2 + (y2 - y1)2(x2, y2) A line segment is graphed on the coordinate plane. The distance between the points can be found using the Distance Formula.(-4 , 1)(2 , 3) Check each step of the work.Then hit OK.The work is shown below to find the distance betweenthe points shown.(-4 , 1)x1y1d = x2(2 , 3)62 + 22(2 - -4)2 + (3 - 1)2y2(x2 - x1)2 + (y2 - y1)2=    40  The exact distance between the points is √40. Round the distance to the nearest tenth.Use a calculator.(-4 , 1)√40 ≈            units(2 , 3) Your Turn! Find the distance between the points.Start by writing the coordinates.(,)(,) Drag the appropriate notation onto the diagram.(x1?2,1y1)(x25,y2?4) d = Plug the values into the distance formula.(     –     )2 + (     –     )2(x2 - x1)2 + (y2 - y1)2(x12,1y1)(x25,4y2) d = Simplify under the radical(5 – 2)2 + ( 4 – 1)2     2  +      2 (x2 - x1)2 + (y2 - y1)2(x12,1y1)(x25,4y2) d = Continue to simplify.(5 – 2)2 + ( 4 – 1)232 + 32 (x2 - x1)2 + (y2 - y1)2+(x12,1y1)(x25,4y2) d = Write the exact answer asa radical.(5 – 2)2 + ( 4 – 1)29 + 932 + 32 (x2 - x1)2 + (y2 - y1)2= √(x12,1y1)(x25,4y2) d = Round to the nearest tenth.(5 – 2)2 + ( 4 – 1)29 + 932 + 32 (x2 - x1)2 + (y2 - y1)2= √18(Round to the nearest tenth:√18 ≈x12,1y1)(x25,4y2)
Students who took this test also took :

Created with That Quiz — where test making and test taking are made easy for math and other subject areas.