A) Wave length B) Time C) Peak amplitude D) Frequency
A) Digital signal B) Bps C) Baud rate D) Bit rate
A) Composite signal B) Harmonic C) Waveforms D) No answer
A) 5 gigabits B) 5 petabits C) 5 terabits
A) Diode B) Transistor C) Composite signals
A) Bandwidth B) Power C) Time D) Phase
A) 3.96MHz B) 396kHz C) 360MHz
A) Attenuation B) Crosstalk C) Capture effect
A) Diode B) Ics C) Composite signal
A) Input transducer B) Encoder C) Output transducer
A) Phase B) No answer C) Wavelength
A) Periodic and discrete B) Kapagod yan C) Periodic and continuous
A) Channel B) Sender C) User
A) Physics B) Electronics C) Biometrics
A) Transponder B) Amplifier C) Oscilloscope
A) Transducer B) ICs C) Amplifier
A) Analog modulation B) Bahala ka C) Digital modulation
A) Yes B) Throughout C) No
A) Decreases B) Increases C) Both?
A) 50bits B) 5000bits C) 500bits
A) ASK B) PSK C) Choose wisely
A) Analog modulation B) Bahala ka C) Digital modulation
A) Throughout B) Period C) Frequent
A) Sine wave B) Frequency C) Digital signal
A) Reflection B) Noise C) Distortion
A) Distortion B) Crosstalk C) Decibel
A) Peak amplitude B) Phase C) Wavelength
A) Transducer B) Channel C) Amplifier
A) 0.000002 seconds B) 0.002 seconds C) 0.000002 milliseconds
A) 0.001 seconds B) 0.01 milliseconds C) 0.01 seconds
A) voltage follower B) differential amplifier C) non-inverting amplifier D) inverting amplifier
A) Kirchhoff's theorem B) Ohm's law C) Fourier theorem D) Nyquist theorem
A) high quantization error B) low accuracy C) slow operation D) large number of comparators required
A) modulation B) digital-to-analog Conversion C) analog-to-digital Conversion D) demodulation
A) converting each sample into discrete amplitude levels B) sampling the signal in time C) encoding binary data D) filtering the analog signal
A) comparator B) differential amplifier C) summing amplifier D) integrator
A) low cost B) very high speed C) simplicity D) low power consumption
A) generate clock pulses B) hold the input signal constant during conversion C) remove high-frequency noise D) remove high-frequency noise
A) sampling only at zero crossings B) integrating input voltage over time C) counting clock pulses during conversion D) comparing input voltage with reference voltages step-by-step
A) resolution speed B) output current C) sampling frequency D) quantization error
A) taking discrete time samples of a continuous signal B) dividing the signal into equal voltage levels C) converting binary to decimal D) filtering unwanted frequencies
A) both input and output impedances are zero B) zero input impedance and infinite output impedance C) infinite input impedance and zero output impedance D) both input and output impedances are infinite
A) inverting input B) non-inverting input C) output terminal D) ground terminal
A) analog voltage B) current form C) binary form D) sinusoidal waveform
A) the positive supply voltage B) the positive output voltage C) the feedback terminal D) the non-inverting input terminal
A) very high B) one C) very small D) Zero
A) reduce bandwidth B) increase gain C) reduce distortion and stabilize gain D) increase input impedance
A) ratio of signal to noise B) difference between actual and quantized value C) sampling frequency error D) sum of all sampled values
A) equal to the signal frequency B) four times the signal frequency C) half the signal frequency D) twice the highest signal frequency
A) encoding B) quantization C) sampling D) filtering |