A) Frequency B) Peak amplitude C) Wave length D) Time
A) Bps B) Digital signal C) Bit rate D) Baud rate
A) Composite signal B) Waveforms C) Harmonic D) No answer
A) 5 gigabits B) 5 petabits C) 5 terabits
A) Transistor B) Composite signals C) Diode
A) Bandwidth B) Power C) Time D) Phase
A) 360MHz B) 396kHz C) 3.96MHz
A) Capture effect B) Attenuation C) Crosstalk
A) Ics B) Diode C) Composite signal
A) Output transducer B) Encoder C) Input transducer
A) Phase B) Wavelength C) No answer
A) Kapagod yan B) Periodic and discrete C) Periodic and continuous
A) User B) Channel C) Sender
A) Physics B) Biometrics C) Electronics
A) Amplifier B) Transponder C) Oscilloscope
A) Transducer B) ICs C) Amplifier
A) Digital modulation B) Analog modulation C) Bahala ka
A) Yes B) No C) Throughout
A) Both? B) Increases C) Decreases
A) 50bits B) 5000bits C) 500bits
A) ASK B) Choose wisely C) PSK
A) Bahala ka B) Digital modulation C) Analog modulation
A) Period B) Frequent C) Throughout
A) Digital signal B) Frequency C) Sine wave
A) Distortion B) Reflection C) Noise
A) Decibel B) Distortion C) Crosstalk
A) Phase B) Wavelength C) Peak amplitude
A) Channel B) Amplifier C) Transducer
A) 0.000002 milliseconds B) 0.000002 seconds C) 0.002 seconds
A) 0.01 seconds B) 0.001 seconds C) 0.01 milliseconds
A) non-inverting amplifier B) inverting amplifier C) voltage follower D) differential amplifier
A) Nyquist theorem B) Kirchhoff's theorem C) Fourier theorem D) Ohm's law
A) large number of comparators required B) slow operation C) low accuracy D) high quantization error
A) demodulation B) analog-to-digital Conversion C) modulation D) digital-to-analog Conversion
A) encoding binary data B) filtering the analog signal C) sampling the signal in time D) converting each sample into discrete amplitude levels
A) comparator B) differential amplifier C) integrator D) summing amplifier
A) low cost B) low power consumption C) very high speed D) simplicity
A) hold the input signal constant during conversion B) remove high-frequency noise C) generate clock pulses D) remove high-frequency noise
A) integrating input voltage over time B) comparing input voltage with reference voltages step-by-step C) sampling only at zero crossings D) counting clock pulses during conversion
A) quantization error B) resolution speed C) output current D) sampling frequency
A) dividing the signal into equal voltage levels B) taking discrete time samples of a continuous signal C) converting binary to decimal D) filtering unwanted frequencies
A) both input and output impedances are infinite B) zero input impedance and infinite output impedance C) infinite input impedance and zero output impedance D) both input and output impedances are zero
A) ground terminal B) non-inverting input C) output terminal D) inverting input
A) sinusoidal waveform B) binary form C) current form D) analog voltage
A) the positive output voltage B) the positive supply voltage C) the non-inverting input terminal D) the feedback terminal
A) very high B) very small C) Zero D) one
A) increase gain B) increase input impedance C) reduce distortion and stabilize gain D) reduce bandwidth
A) ratio of signal to noise B) sum of all sampled values C) sampling frequency error D) difference between actual and quantized value
A) four times the signal frequency B) twice the highest signal frequency C) half the signal frequency D) equal to the signal frequency
A) quantization B) encoding C) sampling D) filtering |