Using Congruence and CPCTC
 1. Determine the postulate that proves why the triangles    are congruent.Drag and drop the correct answers. Two options will not be used.Congruent by:HL?SSSCongruentby: SAS?ASACongruent by:AAS? 2.  What does CPCTC stand for?Corresponding Parts of Corresponding Triangles      are CongruentCongruent Parts of Congruent Triangles are    CorrespondingCongruent Parts of Corresponding Triangles    are CongruentCorresponding Parts of Congruent Triangles     are Congruent 3.  Given ∆CAN ≅ ∆TRY.      What parts do we know are congruent by CPCTC?  CA≅TY∡N≅∡Y*Check ALL that apply.*∡A≅∡RAN≅RY 4.  Given ∆ARM≅∆LEG.       Which parts from among the options are congruent?   ∡A≅∡LRA≅EL*Check ALL that apply.*∡G≅∡RMR≅LE 2. ∡HEF≅∡HGD; ∡HFE≅∡HDG        2. 1. EF∕∕DG; EF≅GD                     1. Given3. ΔEHF ≅ ΔGHD                         3.4. HD≅HF                                 4.5.  Drag the correct justifications to match with      the statements in the proof. Given: EF∕∕DG;  EF ≅ GDProve: HD ≅ HFDEAlternate Interior Angles?Congruent by AAS ≅?Congruent by CPCTC?HFG 6.  Drag the correct justifications to match with      the statements in the proof.1. H is the midpoint of EG & FD   1. Given    EF≅GD             3. ΔEHF ≅ ΔGHD                       3.4. ∡HEF≅∡HGD                        4.2. EH≅GH; FH≅DH                     2. Given: H is the midpoint           of EG & FD; EF ≅ GDProve: ∡HEF ≅ ∡HGDDEdefinition of midpoint?Congruent by CPCTC?Congruent by SSS ≅ ?HFG 7.  What could you use to prove ∡A ≅ ∡Z?HL ≅ and CPCTCdefinition of an     acute angleRight TrianglesAAA ≅ and CPCTC 8. Tell if the highlighted statement is false or if it's true and why.                   AT ≅ UC False True; ∆'s ≅ by SAS, and AT ≅ UC by CPCTC True; ∆'s ≅ by ASA, and AT ≅ UC by def. ≅ sides True; ∆'s ≅ by SAS, and AT ≅ UC by SSSTAEPUC 9. Tell if the highlighted statement    is true or false and why (if it's true).     ∡T ≅ ∡U True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by CPCTC True; ∆'s ≅ by SSS, and AT ≅ UC by SAS False True; ∆'s ≅ by SAS, and ∡T ≅ ∡U by third ∡ thm.TAEPUC 10. Tell if (and why) the highlighted statement is true.∆'s ≅ by SSS, thus true by CPCTC∆'s ≅ by SSS, thus true by congruent angles ∆'s  ≅ by SAS , thus true by CPCTC∆'s are not ≅, thus the statement is false∡A ≅ ∡BACBD
Students who took this test also took :

Created with That Quiz — where a math practice test is always one click away.