Similar Figures
 Similar Figures ||| What is the simplified form of all of these ratios?because the ratios of their matching sideswere equal.In the last example, the triangles were similar1510=128=96= LOIs rectangle LMNO similar to rectangle HIJK?10NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?1. Are the corresponding (matching)10angles the same size?Yes.NM4No.HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?1. Are the corresponding (matching)2. Are the corresponding (matching) sidesin the same ratio?angles the same size?10Yes.NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?Which side corresponds to LM?10NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?Which side corresponds to MN?10NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?Write the unsimplified ratio of LM to HI:10NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?Write the ratio of MN to IJ:10NM4HK8IJ3 LOIs rectangle LMNO similar to rectangle HIJK?Is the ratio LM:HI equal to the ratio MN:IJ ?10108=NM443HK??YesNo8IJ3 LONow answer the question:Is rectangle LMNO similar to rectangle HIJK?10YesNoNM4HK8IJ3 L4O1. The angles are equal, but2. The sides are not in the same ratio.Is rectangle LMNO similar to rectangle HIJK?Now answer the question:1010NO! NM43HK88IJ3 A860∘BIs parallelogram ABCD similar toparallelogram KLMN?120o1212120∘D60o8CK460∘L120∘6120∘660∘N4M A860∘1. Are the corresponding angles equal?BIs parallelogram ABCD similar toparallelogram KLMN?120∘1212120∘Yes.No.D60∘8CK460∘L120∘6120∘660∘N4M 2. Do the sides form the same ratio ?Aparallelogram KLMN?Is parallelogram ABCD similar to860∘Complete this ratio:B120∘1212120∘D60∘8CABKLK460∘=L120∘6120∘660∘N4M A2. Do the sides form the same ratio?parallelogram KLMN?Is parallelogram ABCD similar to860∘Complete this ratio:B120∘1212120∘D60∘8CLMBCK460∘=L120∘6120∘660∘N4M 2. Do the sides form the same ratio ?Is parallelogram ABCD similar toAAre the ratios equal ?Yes.860∘B120∘12No.12120∘D60∘8C84K460∘parallelogram KLMN?=L120∘6126120∘660∘N4M Is parallelogram ABCD similar toA860∘B120∘12Yes.12120∘DNo.60∘8CK460∘parallelogram KLMN?L120∘6120∘660∘N4M Is parallelogram ABCD similar toAYES!! Corresponding angles are equal ANDcorresponding sides are in the same ratio.860∘B120∘1212120∘D60∘8CK4parallelogram KLMN?60∘L120∘6120∘660∘N4M Which side corresponds to YZ?CDABADXW Complete the ratio:YZ2= Solve this simple equationto find the length of YZ.YZ2=1624YZ =  24DA12CB15Given thattrapezoid ABCD ||| trapezoid WZYX,find m.   (||| means 'similar to')WmZ16YX 24DAGiven thatfind m.12CB15Complete the ratio needed to find m:trapezoid ABCD ||| trapezoid WZYX,Wm2416Z16=YXm goes here 24DA12CB15Given thattrapezoid ABCD ||| trapezoid WZYX,find m.WmUse cross multiplication or equivalent fractions to find m.2416Z=1612mm =YX 24DA12CB15Given thattrapezoid ABCD ||| trapezoid WZYX,find YZ.WmComplete the ratio for YZ:Z16YXWrite a number here.YZ 24DA12CB15WGiven thattrapezoid ABCD ||| trapezoid WZYX,find YZ.Complete the ratio:mZ16YZ15YX= 24DA12CB15Given thattrapezoid ABCD ||| trapezoid WZYX,find YZ.W15YZm=Z162416YZ = YX CGiven ∆ABC ||| ∆DEF, find n.1210ABF6nDE Complete this ratio:CGiven ∆ABC ||| ∆DEF, find n.1210AB10Fn6n=DE C12Given ∆ABC ||| ∆DEF, find n.10ABSolve this ratio:F6nDE10nn = =126 Congratulations!!You have finished.
Students who took this test also took :

Created with That Quiz — the site for test creation and grading in math and other subjects.