Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) 3x4 – 5x – 7
B) x2 – 5x – 7
C) Cap de totes
D) –2x3 – 13x2 – 5x – 7
E) -13x2 + 5x +7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 3x2 – 6x
B) –12x6 + 3x4 – 6x
C) –12x3 + 9x2 – 6x
D) 12x3 - 3x2 + 6x
E) Cap de totes
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x4 + 5x2 – 3
B) Cap de totes
C) 2x3 – 3x2 + 5x – 3
D) 2x3 – 6x2 + 10x – 9
E) 2x3 – -3x2 - 5x + 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) –1–6x6 + 8x4
C) –12x3 + 16x2
D) Cap de totes
E) 6x3 - 8x2
  • 5. 6x2 – 7x2 + 3x2
A) 2x4
B) -2x2
C) 2x6
D) 2x2
E) Cap de totes
  • 6. Per a sumar Monomis
A) Sols si coincideix del coeficient
B) Es poden sumar tots
C) Sols es multipliquen
D) Mai es poden sumar
E) Tenen que ser semblats
  • 7. Per a multiplicar Monomis
A) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
B) Mai es poden multiplicar
C) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
D) Sols es poden sumar
E) Tenen que ser semblats
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix signe
B) Quan son inversos
C) Quan tenen identica part literal
D) Quan tenen el mateix coeficien
E) Quan tenen el mateix exponent
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Students who took this test also took :

Created with That Quiz — a math test site for students of all grade levels.