A) Function B) Relation C) Language
A) Sets B) Language C) Grammar
A) Powerful B) Concise C) Precise D) Equality
A) Concise B) Powerful C) Precise
A) Powerful B) Concise C) Precise
A) Precise B) Powerful C) Concise
A) Variables B) Sets C) Functions
A) Universal Statement B) Conditional Statement C) Existential Statement
A) Existential Statement B) Conditional Statement C) Universal Statement
A) Existential Statement B) Universal Statement C) Conditional Statement
A) Functions are not related to relations B) Functions cannot be represented as ordered pairs C) Each input relates to only one output
A) Cannot be counted B) Has a finite number of elements C) Can be counted
A) At least one element of a set B) All elements of a set C) Some elements of a set
A) Existential Statement B) Universal Statement C) Conditional Statement
A) There exists a prime number B) If x is a dog, then x is a mammal C) For all positive integers
A) Only one element in common B) Exactly the same elements C) Different elements
A) To create music B) To decorate text C) To communicate ideas
A) Only membership B) Only quality C) Equality, inequality, or membership
A) Variable B) Numeral C) Constant
A) {4,6} B) {2} C) (1, 2, 3, 4, 6)
A) Overcomplicate information B) Convey complex ideas in shorter terms C) Eliminate precision
A) Numbers like 2, 3, 5, 7, etc. B) Whole numbers only C) Only the number 1
A) A=B B) AUB C) A/B
A) Each input can relate to multiple outputs B) Functions are not related to relations C) Each input relates to only one output
A) finite B) infinite
A) equivalent sets B) equal sets
A) finite B) infinite
A) equivalent set B) equal set
A) joint sets B) disjoint sets
A) joint set B) disjoint sets
A) Universal set B) Complement sets
A) empty sets B) no sets
A) Function B) Domain C) Elements |