A) Relation B) Function C) Language
A) Sets B) Language C) Grammar
A) Powerful B) Equality C) Precise D) Concise
A) Concise B) Powerful C) Precise
A) Concise B) Precise C) Powerful
A) Precise B) Powerful C) Concise
A) Variables B) Sets C) Functions
A) Existential Statement B) Universal Statement C) Conditional Statement
A) Existential Statement B) Conditional Statement C) Universal Statement
A) Existential Statement B) Universal Statement C) Conditional Statement
A) Functions are not related to relations B) Each input relates to only one output C) Functions cannot be represented as ordered pairs
A) Can be counted B) Cannot be counted C) Has a finite number of elements
A) All elements of a set B) Some elements of a set C) At least one element of a set
A) Conditional Statement B) Existential Statement C) Universal Statement
A) If x is a dog, then x is a mammal B) There exists a prime number C) For all positive integers
A) Only one element in common B) Exactly the same elements C) Different elements
A) To create music B) To communicate ideas C) To decorate text
A) Only quality B) Equality, inequality, or membership C) Only membership
A) Variable B) Constant C) Numeral
A) (1, 2, 3, 4, 6) B) {4,6} C) {2}
A) Overcomplicate information B) Convey complex ideas in shorter terms C) Eliminate precision
A) Only the number 1 B) Numbers like 2, 3, 5, 7, etc. C) Whole numbers only
A) A=B B) A/B C) AUB
A) Functions are not related to relations B) Each input can relate to multiple outputs C) Each input relates to only one output
A) infinite B) finite
A) equal sets B) equivalent sets
A) infinite B) finite
A) equivalent set B) equal set
A) disjoint sets B) joint sets
A) disjoint sets B) joint set
A) Universal set B) Complement sets
A) no sets B) empty sets
A) Domain B) Elements C) Function |