A) Relation B) Function C) Language
A) Language B) Sets C) Grammar
A) Concise B) Equality C) Powerful D) Precise
A) Powerful B) Precise C) Concise
A) Powerful B) Precise C) Concise
A) Precise B) Concise C) Powerful
A) Functions B) Sets C) Variables
A) Universal Statement B) Conditional Statement C) Existential Statement
A) Conditional Statement B) Existential Statement C) Universal Statement
A) Conditional Statement B) Universal Statement C) Existential Statement
A) Functions are not related to relations B) Functions cannot be represented as ordered pairs C) Each input relates to only one output
A) Cannot be counted B) Has a finite number of elements C) Can be counted
A) Some elements of a set B) All elements of a set C) At least one element of a set
A) Universal Statement B) Conditional Statement C) Existential Statement
A) For all positive integers B) There exists a prime number C) If x is a dog, then x is a mammal
A) Only one element in common B) Different elements C) Exactly the same elements
A) To communicate ideas B) To create music C) To decorate text
A) Only membership B) Only quality C) Equality, inequality, or membership
A) Variable B) Constant C) Numeral
A) {2} B) (1, 2, 3, 4, 6) C) {4,6}
A) Convey complex ideas in shorter terms B) Eliminate precision C) Overcomplicate information
A) Only the number 1 B) Whole numbers only C) Numbers like 2, 3, 5, 7, etc.
A) A=B B) AUB C) A/B
A) Each input can relate to multiple outputs B) Functions are not related to relations C) Each input relates to only one output
A) finite B) infinite
A) equivalent sets B) equal sets
A) finite B) infinite
A) equivalent set B) equal set
A) joint sets B) disjoint sets
A) joint set B) disjoint sets
A) Universal set B) Complement sets
A) no sets B) empty sets
A) Elements B) Function C) Domain |