Lesson Easy Trinomials +C (Pt1)

There are 5 steps to factor a polynomial There are 5 steps to factor a polynomial Look for GCF There are 5 steps to factor a polynomial Look for GCF Look for a pattern There are 5 steps to factor a polynomial Look for GCF Look for a pattern Factor an easy trinomial There are 5 steps to factor a polynomial Look for GCF Look for a pattern Factor an easy trinomial Factor a hard trinomial There are 5 steps to factor a polynomial Look for GCF Look for a pattern Factor an easy trinomial Factor a hard trinomial Grouping We are going to talk about the third step There are 5 steps to factor a polynomial Look for GCF Look for a pattern Factor an easy trinomial Factor a hard trinomial Grouping Factoring easy trinomials is fairly simple. a trinomial Factoring easy trinomials is fairly simple. x ^{2} - 4 x + 3Factoring easy trinomials is fairly simple. The most important part is... x ^{2} - 4 x + 3Factoring easy trinomials is fairly simple. The most important part is... ...the last sign. x ^{2} - 4 x + 3last sign What is the most part of these trinomials? x ^{2} - 10x - 20- ? x ^{2} - 4x + 3+ ? Identify the most important sign in these trinomials x ^{2} + 3x - 5Identify the most important sign in these trinomials x ^{2} + 3x - 5- x ^{2} - 4x + 2Identify the most important sign in these trinomials x ^{2} - 4x -12x ^{2} + 3x - 5- x ^{2} - 4x + 2+ Identify the most important sign in these trinomials x ^{2} - 4x -12x ^{2} + 3x - 5- - x ^{2} + 8x + 4x ^{2} - 4x + 2+ What is the most important sign in this trinomial? x ^{2} +5x -6+ - This sign tells you two things... x ^{2} - 4 x + 3last sign This sign tells you two things... ...the signs of your factors, x ^{2} - 4 x + 3last sign This sign tells you two things... and whether you add or subtract the factors ...the signs of your factors, x ^{2} - 4 x + 3last sign For example... For example... x ^{2} - 8x + 12This polynomial has a '+' for its last sign For example... x ^{2} - 8x + 12a plus sign This polynomial has a '+' for its last sign so that means two things... For example... x ^{2} - 8x + 12This polynomial has a '+' for its last sign so that means two things... 1. the factor signs are the same For example... x ^{2} - 8x + 12This polynomial has a '+' for its last sign so that means two things... 2. the factors must be added 1. the factor signs are the same For example... x ^{2} - 8x + 12x ^{2} - 3x - 12factor signs are the same factor signs are different Answer each of the following If the factors must be added then the sign must be... x ^{2} - 3x - 12 factor signs are different Answer each of the following x ^{2} + 8x + 3this sign is plus x ^{2} - 8x + 12this sign is plus so that means... x ^{2} - 8x + 12this sign is plus so that means... the factor signs will be the same x ^{2} - 8x + 12so the factors will either look like this this sign is plus so that means... the factor signs will be the same x ^{2} - 8x + 12so the factors will either look like this this sign is plus so that means... the factor signs will be the same x ^{2} - 8x + 12( x + ) ( x + ) so the factors will either look like this this sign is plus so that means... the factor signs will be the same or this x ^{2} - 8x + 12( x + ) ( x + ) ( x - ) ( x - ) Match the factor signs with the correct trinomial ( x - ) ( x - ) ? x ^{2} - 5x + 2( x + ) ( x - ) ? x ^{2} + 5x - 2How do we tell which one it is? x ^{2} - 8x + 12the double positive? How do we tell which one it is? x ^{2} - 8x + 12the double positive? ( x + ) ( x + ) How do we tell which one it is? x ^{2} - 8x + 12the double positive ( x + ) ( x + ) How do we tell which one it is? x ^{2} - 8x + 12or the double negative? the double positive ( x + ) ( x + ) How do we tell which one it is? x ^{2} - 8x + 12or the double negative ( x - ) ( x - ) previous sign the double positive ( x + ) ( x + ) How do we tell which one it is? We can tell by the previous sign x ^{2} - 8x + 12or the double negative ( x - ) ( x - ) if that sign is positive the double positive ( x + ) ( x + ) How do we tell which one it is? We can tell by the previous sign x ^{2} - 8x + 12or the double negative ( x - ) ( x - ) then we use the double positive if that sign is positive the double positive ( x + ) ( x + ) How do we tell which one it is? We can tell by the previous sign x ^{2} - 8x + 12or the double negative ( x - ) ( x - ) then we use the double positive if that sign is positive the double positive ( x + ) ( x + ) How do we tell which one it is? We can tell by the previous sign x ^{2} - 8x + 12or the double negative but if that sign is negative ( x - ) ( x - ) then we use the double positive if that sign is positive the double positive ( x + ) ( x + ) How do we tell which one it is? We can tell by the previous sign x ^{2} - 8x + 12or the double negative but if that sign is negative ( x - ) ( x - ) double negative then use the ( x - ) ( x - ) ? Match the factor signs with the correct trinomial x ^{2} - 4x + 5( x + ) ( x + ) ? x ^{2} + 4x + 5( x - ) ( x + ) ? x ^{2} - 4x - 5( x + ) ( x + ) So since the previous sign is negative negative x ^{2} - 8x + 12( x - ) ( x - ) ( x + ) ( x + ) then we use the double negative factors So since the previous sign is negative negative x ^{2} - 8x + 12( x - ) ( x - ) Find the correct signs for the factor (x - )(x + ) (x - )(x - ) (x + )(x + ) (x + )(x - ) x ^{2} + 6x + 7Find the correct signs for the factor (x - )(x + ) (x - )(x - ) (x + )(x + ) (x + )(x - ) x ^{2} - 6x + 7Find the correct signs for the factor (x - )(x + ) (x - )(x - ) (x + )(x + ) (x + )(x - ) x ^{2} - 7x + 12Find the correct signs for the factor (x - )(x + ) (x - )(x - ) (x + )(x + ) (x + )(x - ) x ^{2} + 7x + 12 |

Students who took this test also took :

Created with That Quiz —
where test making and test taking are made easy for math and other subject areas.