LEE-FELIR (F)
  • 1. What is the defining characteristic of the training data used in supervised learning?
A) The data is unlabeled, and the model must find patterns on its own.
B) The @data is labeled, meaning each example is paired with a target output.
C) The data is generated randomly by the algorithm.
D) The data is generated randomly by the algorithm.
  • 2. The primary goal of a supervised learning model is to:
A) Memorize the entire training dataset perfectly.
B) Gen@eralize from the training data to make accurate predictions on new, unseen data.
C) Discover hidden patterns without any guidance.
D) Reduce the dimensionality of the input data for visualization.
  • 3. In the analogy of a child learning from flashcards, the animal's name on the card represents what component of supervised learning?
A) The input features.
B) The model's parameters.
C) The loss function.
D) The@ label or target output.
  • 4. Which of the following tasks is a classic example of a classification problem?
A) Predicting the selling price of a house based on its features.
B) Diagnosing @a tumor as malignant or benign based on medical images.
C) Forecasting the temperature for tomorrow.
D) Estimating the annual revenue of a company.
  • 5. A model that predicts the continuous value of a stock price for the next day is solving a:
A) Dimensionality reduction problem.
B) Classification problem.
C) Regressio@n problem.
D) Clustering problem.
  • 6. What is the core objective of unsupervised learning?
A) To predict a target variable based on labeled examples.
B) To classify emails into spam and non-spam folders.
C) To achieve perfect accuracy on a held-out test set.
D) To @discover the inherent structure, patterns, or relationships within unlabeled data.
  • 7. In the analogy of a child grouping toys without instructions, the act of putting all the cars together is most similar to which unsupervised learning technique?
A) Reinforcement Learning.
B) Classification.
C) Regression.
D) C@lustering.
  • 8. Grouping customers based solely on their purchasing behavior, without pre-defined categories, is an application of:
A) A support vector machine for classification.
B) Clu@stering, a type of unsupervised learning.
C) Linear Regression, a type of supervised learning.
D) Logistic Regression, a type of supervised learning.
  • 9. The main goal of dimensionality reduction techniques like PCA is to:
A) Increase the number of features to improve model accuracy.
B) Re@duce the number of features while preserving the most important information in the data.
C) Assign categorical labels to each data point.
D) Predict a continuous output variable.
  • 10. Market basket analysis, which finds rules like "if chips then soda," is a classic example of:
A) Deep learning with neural networks.
B) Regression in supervised learning.
C) Classification in supervised learning.
D) Ass@ociation rule learning in unsupervised learning.
  • 11. Semi-supervised learning is particularly useful in real-world scenarios because:
A) It is always more accurate than fully supervised learning.
B) It requires no labeled data at all.
C) It is simpler to implement than unsupervised learning.
D) La@beling data is often expensive and time-consuming, so it leverages a small labeled set with a large unlabeled set.
  • 12. The fundamental question that a regression model aims to answer is:
A) "H@ow much?" or "How many?"
B) "What is the underlying group?"
C) "Is this pattern anomalous?"
D) "Which category?"
  • 13. The fundamental question that a classification model aims to answer is:
A) "What is the correlation between these variables?"
B) "Whic@h category?" or "What class?"
C) "How can I reduce the number of features?"
D) "How much?" or "How many?"
  • 14. Which algorithm is most directly designed for predicting a continuous target variable?
A) Decision Tree for classification
B) k-Nearest Neighbors for classification
C) Logistic Regression
D) Lin@ear Regression
  • 15. A model that uses patient data to assign a label of "High," "Medium," or "Low" risk for a disease is performing:
A) Dimensionality reduction
B) Regression
C) Mult@i-class classification
D) Clustering
  • 16. In a Decision Tree used for classification, what do the leaf nodes represent?
A) The average value of a continuous target
B) The probability of moving to the next node
C) The input features for a new data point
D) Th@e final class labels or decisions
  • 17. In a Regression Tree, what is typically represented at the leaf nodes?
A) A c@ontinuous value, often the mean of the target values of the training instances that reach the leaf
B) The name of the feature used for splitting
C) A categorical class label
D) A random number
  • 18. A key strength of Decision Trees is their:
A) Immunity to overfitting on noisy datasets
B) Inter@pretability; the model's decision-making process is easy to understand and visualize
C) Superior performance on all types of data compared to other algorithms
D) Guarantee to find the global optimum for any dataset
  • 19. The "kernel trick" used in Support Vector Machines (SVMs) allows them to:
A) Initialize the weights of a neural network
B) Perform linear regression more efficiently
C) Grow a tree structure by making sequential decisions
D) Fin@d a linear separating hyperplane in a high-dimensional feature space, even when the data is not linearly separable in the original space
  • 20. The "support vectors" in an SVM are the:
A) All data points in the training set
B) . Da@ta points that are closest to the decision boundary and most critical for defining the optimal hyperplane
C) The weights of a neural network layer
D) The axes of the original feature space
  • 21. When comparing Decision Trees and SVMs, a primary advantage of SVMs is:
A) Their inherent resistance to any form of overfitting
B) The@ir effectiveness in high-dimensional spaces and their ability to model complex, non-linear decision boundaries
C) Their superior interpretability and simplicity
D) Their lower computational cost for very large datasets
  • 22. The process in supervised learning where a model's parameters are adjusted to minimize the difference between its predictions and the true labels is called:
A) Clustering
B) Tr@aining or model fitting
C) Dimensionality reduction
D) Data preprocessing
  • 23. A key challenge in unsupervised learning is evaluating model performance because:
A) There@ are no ground truth labels to compare the results against
B) The algorithms are not well-defined
C) The data is always too small
D) The models are always less accurate than supervised models
  • 24. The task of reducing a 50-dimensional dataset to a 2-dimensional plot for visualization is best accomplished by:
A) A Classification algorithm like Logistic Regression
B) A Regression algorithm like Linear Regression
C) Dimen@sionality Reduction techniques like Principal Component Analysis (PCA)
D) An Association rule learning algorithm
  • 25. If an e-commerce company wants to automatically group its products into categories without any pre-existing labels, it should use:
A) Classification, a supervised learning method
B) Clus@tering, an unsupervised learning method
C) Regression, a supervised learning method
D) A neural network for image recognition
  • 26. The core building block of a neural network is a(n):
A) Principal component
B) Artifi@cial neuron or perceptron, which receives inputs, applies a transformation, and produces an output
C) Support vector
D) Decision node in a tree
  • 27. In a neural network, the function inside a neuron that determines its output based on the weighted sum of its inputs is called the:
A) Loss function
B) Kernel function
C) Optimization algorithm
D) Activ@ation function
  • 28. Which of the following is a non-linear activation function crucial for allowing neural networks to learn complex patterns?
A) The identity function (f(x) = x)
B) Rectifie@d Linear Unit (ReLU)
C) The mean squared error function
D) A constant function
  • 29. The process of "training" a neural network involves:
A) Iterativ@ely adjusting the weights and biases to minimize a loss function
B) Randomly assigning weights and never changing them
C) Clustering the input data
D) Manually setting the weights based on expert knowledge
  • 30. Backpropagation is the algorithm used in neural networks to:
A) Perform clustering on the output layer
B) Visualize the network's architecture
C) Initialize the weights before training
D) Efficient@ly calculate the gradient of the loss function with respect to all the weights in the network, enabling the use of gradient descent
  • 31. Deep Learning is a subfield of machine learning that primarily uses:
A) K-means clustering exclusively
B) Neural n@etworks with many layers (hence "deep")
C) Decision trees with a single split
D) Simple linear regression models
  • 32. A key advantage of deep neural networks over shallower models is their ability to:
A) Operate without any need for data preprocessing
B) Auto@matically learn hi@erarchical feature representations from data
C) Be perfectly interpretable, like a decision tree
D) Always train faster and with less data
  • 33. Convolutional Neural Networks (CNNs) are particularly well-suited for tasks involving:
A) Image @data, due to their architecture which exploits spatial locality
B) Text data and natural language processing
C) Unsupervised clustering of audio signals
D) Tabular data with many categorical features
  • 34. The "convolution" operation in a CNN is designed to:
A) Flatten the input into a single vector
B) Detect@ local features (like edges or textures) in the input by applying a set of learnable filters
C) Initialize the weights of the network
D) Perform the final classification
  • 35. Recurrent Neural Networks (RNNs) are designed to handle:
A) Static, non-temporal data
B) Independent and identically distributed (IID) data points
C) Only image data
D) Sequ@ential data, like time series or text, due to their internal "memory" of previous inputs
  • 36. The "vanishing gradient" problem in deep networks refers to:
A) The model overfitting to the training data
B) The gradients becoming too large and causing numerical instability
C) The@ gradients becoming exceedingly small as they are backpropagated through many layers, which can halt learning in early layers
D) The loss function reaching a perfect value of zero
  • 37. The "training set" is used to:
A) Deploy the model in a production environment
B) Tune the model's hyperparameters
C) Fit th@e model's parameters (e.g., the weights in a neural network)
D) Provide an unbiased evaluation of a final model's performance
  • 38. The "validation set" is primarily used for:
A) Tun@ing hyperparameters and making decisions about the model architecture during development
B) The initial training of the model's weights
C) Data preprocessing and cleaning
D) The final, unbiased assessment of the model's generalization error
  • 39. The "test set" should be:
A) Ignored in the machine learning pipeline
B) Used repeatedly to tune the model's hyperparameters
C) Used repeatedly to tune the model's hyperparameters
D) Use@d only once, for a final evaluation of the model's performance on unseen data after model development is complete
  • 40. Overfitting occurs when a model:
A) Is too simple to capture the trends in the data
B) Learns @the training data too well, including its noise and outliers, and performs poorly on new, unseen data
C) Fails to learn the underlying pattern in the training data
D) Is evaluated using the training set instead of a test set
  • 41. A common technique to reduce overfitting in neural networks is:
A) Training for more epochs without any checks
B) Increasing the model's capacity by adding more layers
C) Dropo@ut, which randomly ignores a subset of neurons during training
D) Using a smaller training dataset
  • 42. The "bias" of a model refers to:
A) The error from sensitivity to small fluctuations in the training set, leading to overfitting
B) The erro@r from erroneous assumptions in the learning algorithm, leading to underfitting
C) The activation function used in the output layer
D) The weights connecting the input layer to the hidden layer
  • 43. The "variance" of a model refers to:
A) The error from erroneous assumptions in the learning algorithm, leading to underfitting
B) The er@ror from sensitivity to small fluctuations in the training set, leading to overfitting
C) The intercept term in a linear regression model
D) The speed at which the model trains
  • 44. The "bias-variance tradeoff" implies that:
A) Only bias is important for model performance
B) Decrea@sing bias will typically increase variance, and vice versa. The goal is to find a balance
C) Only variance is important for model performance
D) Bias and variance can be minimized to zero simultaneously
  • 45. A learning curve that shows high training accuracy but low validation accuracy is a classic sign of:
A) Underfitting
B) A well-generalized model
C) Overf@itting
D) Perfect model performance
  • 46. In a neural network, the "loss function" (or cost function) measures:
A) The speed of the backpropagation algorithm
B) The accuracy on the test set
C) The number of layers in the network
D) How well the model is performing on the training data; it's the quantity we want to minimize during training
  • 47. Gradient Descent is an optimization algorithm that:
A) Randomly searches the parameter space for a good solution
B) Is only used for unsupervised learning
C) Iteratively adjusts parameters in the direction that reduces the loss function
D) Guarantees finding the global minimum for any loss function
  • 48. The "learning rate" in gradient descent controls:
A) The amount of training data used in each epoch
B) The activation function for the output layer
C) The size of the step taken during each parameter update. A rate that is too high can cause divergence, while one that is too low can make training slow
D) The number of layers in a neural network
  • 49. "Epoch" in neural network training refers to:
A) The final evaluation on the test set
B) The processing of a single training example
C) A type of regularization technique
D) One complete pass of the entire training dataset through the learning algorithm
  • 50. "Batch Size" in neural network training refers to:
A) The number of layers in the network
B) The number of training examples used in one forward/backward pass before the model's parameters are updated
C) The number of validation examples
D) The total number of examples in the training set
  • 51. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 52. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 53. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) One complete pass of the entire training dataset through the learning algorithm
  • 54. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) One complete pass of the entire training dataset through the learning algorithm
  • 55. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 56. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 57. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 58. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 59. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 60. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 61. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 62. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 63. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 64. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 65. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
Created with That Quiz — a math test site for students of all grade levels.