A) Time B) Wave length C) Frequency D) Peak amplitude
A) Bps B) Baud rate C) Digital signal D) Bit rate
A) Harmonic B) Composite signal C) Waveforms D) No answer
A) 5 terabits B) 5 petabits C) 5 gigabits
A) Diode B) Transistor C) Composite signals
A) Time B) Phase C) Power D) Bandwidth
A) 396kHz B) 360MHz C) 3.96MHz
A) Attenuation B) Crosstalk C) Capture effect
A) Diode B) Ics C) Composite signal
A) Encoder B) Output transducer C) Input transducer
A) Phase B) Wavelength C) No answer
A) Periodic and discrete B) Periodic and continuous C) Kapagod yan
A) Sender B) User C) Channel
A) Electronics B) Physics C) Biometrics
A) Amplifier B) Oscilloscope C) Transponder
A) ICs B) Transducer C) Amplifier
A) Bahala ka B) Digital modulation C) Analog modulation
A) Throughout B) Yes C) No
A) Both? B) Increases C) Decreases
A) 5000bits B) 50bits C) 500bits
A) ASK B) Choose wisely C) PSK
A) Analog modulation B) Digital modulation C) Bahala ka
A) Period B) Throughout C) Frequent
A) Sine wave B) Frequency C) Digital signal
A) Noise B) Distortion C) Reflection
A) Crosstalk B) Decibel C) Distortion
A) Wavelength B) Peak amplitude C) Phase
A) Channel B) Amplifier C) Transducer
A) 0.002 seconds B) 0.000002 seconds C) 0.000002 milliseconds
A) 0.01 seconds B) 0.01 milliseconds C) 0.001 seconds
A) inverting amplifier B) non-inverting amplifier C) differential amplifier D) voltage follower
A) Fourier theorem B) Ohm's law C) Nyquist theorem D) Kirchhoff's theorem
A) low accuracy B) large number of comparators required C) slow operation D) high quantization error
A) demodulation B) modulation C) analog-to-digital Conversion D) digital-to-analog Conversion
A) encoding binary data B) filtering the analog signal C) sampling the signal in time D) converting each sample into discrete amplitude levels
A) integrator B) differential amplifier C) summing amplifier D) comparator
A) low power consumption B) very high speed C) low cost D) simplicity
A) remove high-frequency noise B) generate clock pulses C) remove high-frequency noise D) hold the input signal constant during conversion
A) sampling only at zero crossings B) comparing input voltage with reference voltages step-by-step C) integrating input voltage over time D) counting clock pulses during conversion
A) sampling frequency B) output current C) resolution speed D) quantization error
A) converting binary to decimal B) dividing the signal into equal voltage levels C) taking discrete time samples of a continuous signal D) filtering unwanted frequencies
A) both input and output impedances are zero B) both input and output impedances are infinite C) infinite input impedance and zero output impedance D) zero input impedance and infinite output impedance
A) ground terminal B) inverting input C) output terminal D) non-inverting input
A) binary form B) sinusoidal waveform C) analog voltage D) current form
A) the positive output voltage B) the non-inverting input terminal C) the positive supply voltage D) the feedback terminal
A) one B) Zero C) very small D) very high
A) increase input impedance B) increase gain C) reduce distortion and stabilize gain D) reduce bandwidth
A) ratio of signal to noise B) difference between actual and quantized value C) sum of all sampled values D) sampling frequency error
A) four times the signal frequency B) half the signal frequency C) equal to the signal frequency D) twice the highest signal frequency
A) quantization B) filtering C) encoding D) sampling |