A) Frequency B) Wave length C) Peak amplitude D) Time
A) Baud rate B) Bps C) Digital signal D) Bit rate
A) Harmonic B) Composite signal C) No answer D) Waveforms
A) 5 petabits B) 5 gigabits C) 5 terabits
A) Transistor B) Diode C) Composite signals
A) Power B) Time C) Phase D) Bandwidth
A) 360MHz B) 396kHz C) 3.96MHz
A) Crosstalk B) Attenuation C) Capture effect
A) Diode B) Ics C) Composite signal
A) Output transducer B) Input transducer C) Encoder
A) Wavelength B) Phase C) No answer
A) Periodic and continuous B) Kapagod yan C) Periodic and discrete
A) Channel B) User C) Sender
A) Physics B) Electronics C) Biometrics
A) Oscilloscope B) Amplifier C) Transponder
A) ICs B) Transducer C) Amplifier
A) Digital modulation B) Analog modulation C) Bahala ka
A) Throughout B) Yes C) No
A) Increases B) Decreases C) Both?
A) 500bits B) 50bits C) 5000bits
A) ASK B) Choose wisely C) PSK
A) Digital modulation B) Bahala ka C) Analog modulation
A) Throughout B) Frequent C) Period
A) Sine wave B) Digital signal C) Frequency
A) Distortion B) Reflection C) Noise
A) Crosstalk B) Distortion C) Decibel
A) Peak amplitude B) Phase C) Wavelength
A) Channel B) Transducer C) Amplifier
A) 0.000002 milliseconds B) 0.000002 seconds C) 0.002 seconds
A) 0.01 milliseconds B) 0.01 seconds C) 0.001 seconds
A) voltage follower B) inverting amplifier C) non-inverting amplifier D) differential amplifier
A) Nyquist theorem B) Fourier theorem C) Kirchhoff's theorem D) Ohm's law
A) low accuracy B) slow operation C) large number of comparators required D) high quantization error
A) analog-to-digital Conversion B) demodulation C) digital-to-analog Conversion D) modulation
A) converting each sample into discrete amplitude levels B) encoding binary data C) filtering the analog signal D) sampling the signal in time
A) integrator B) summing amplifier C) comparator D) differential amplifier
A) very high speed B) low cost C) simplicity D) low power consumption
A) remove high-frequency noise B) hold the input signal constant during conversion C) generate clock pulses D) remove high-frequency noise
A) sampling only at zero crossings B) counting clock pulses during conversion C) integrating input voltage over time D) comparing input voltage with reference voltages step-by-step
A) output current B) sampling frequency C) resolution speed D) quantization error
A) filtering unwanted frequencies B) converting binary to decimal C) dividing the signal into equal voltage levels D) taking discrete time samples of a continuous signal
A) zero input impedance and infinite output impedance B) both input and output impedances are infinite C) both input and output impedances are zero D) infinite input impedance and zero output impedance
A) output terminal B) inverting input C) non-inverting input D) ground terminal
A) binary form B) sinusoidal waveform C) current form D) analog voltage
A) the positive supply voltage B) the positive output voltage C) the feedback terminal D) the non-inverting input terminal
A) very small B) one C) Zero D) very high
A) reduce bandwidth B) reduce distortion and stabilize gain C) increase gain D) increase input impedance
A) ratio of signal to noise B) difference between actual and quantized value C) sum of all sampled values D) sampling frequency error
A) twice the highest signal frequency B) four times the signal frequency C) equal to the signal frequency D) half the signal frequency
A) encoding B) sampling C) quantization D) filtering |