A) The history of quantum computing B) The development of nuclear weapons C) Marine biology in deep ocean trenches D) The intersection of cosmology and extreme environments
A) Australia B) Chile C) Namibia D) Arizona, USA
A) To collide particles at high energies B) To study ocean currents C) To observe distant galaxies D) To measure gravitational waves
A) Neutrinos B) Gamma rays C) Radio waves D) Cosmic strings
A) North Pole B) Himalayas C) South Pole D) Sahara Desert
A) Large International Gamma Observatory B) Laser Interferometer Gravitational-Wave Observatory C) Light Interference Gamma Organization D) Low Intensity Gravitational Observer
A) Discrepancy in vacuum energy density B) Speed of light variation C) Dark energy decay rate D) Quantum gravity unification
A) Higgs boson B) Neutrino C) Graviton D) Tachyon
A) Measure cosmic expansion B) Observe quantum entanglement C) Detect dark matter particles D) Study solar neutrinos
A) Cosmic Magnetic Field B) Cosmic Microwave Background C) Central Molecular Band D) Celestial Motion Background
A) Their political significance B) Their extreme environmental conditions C) Their tourist appeal D) Their historical importance
A) They are too large to detect B) They only exist in theory C) They travel slower than light D) They interact very weakly with matter
A) Weak Ionization Measurement Process B) Weakly Interacting Massive Particle C) Wideband Interstellar Mass Particle D) Wave Interference Measurement Protocol
A) Consciousness creates reality B) Humans control cosmic evolution C) Life exists only on Earth D) Universe must allow observer existence
A) Pursuit of fundamental physics questions B) Political cooperation between nations C) Tourism in remote areas D) Economic development through science
A) Cosmic microwave background polarization B) Black hole mergers C) Solar flares D) Quantum computing
A) 24-hour sunlight in summer B) Closest to space C) Clear, dry atmosphere for observations D) Strong magnetic field
A) Neutrino mass hierarchy B) Horizon and flatness problems C) Dark matter composition D) Quantum gravity unification
A) High altitude and dry climate B) Strong internet connectivity C) Low population density D) Proximity to equator
A) Mount Wilson Observatory B) Mauna Kea Observatories C) Mount Palomar Observatory D) Kitt Peak National Observatory
A) Gran Sasso National Laboratory B) Homestake Mine C) SNOLAB D) Boulby Underground Laboratory
A) KAGRA B) KamLAND C) Super-Kamiokande D) T2K
A) Liquid helium B) Liquid nitrogen C) Heavy water (deuterium oxide) D) Liquid hydrogen
A) MAGIC B) H.E.S.S. C) VERITAS D) CTA
A) DUNE B) ICARUS C) Super-Kamiokande D) SNO+
A) Sahara Desert B) Gobi Desert C) Mojave Desert D) Atacama Desert
A) NASA B) CERN C) ESA D) JAXA
A) CERN B) Fermilab C) SNOLAB D) SLAC
A) ITER B) SSC C) JET D) LIGO
A) Lick Observatory B) Palomar C) Mount Wilson D) BICEP
A) Chile B) Namibia C) Australia D) Hawaii
A) WIMP B) Photon C) Neutrino D) Higgs boson
A) Understanding accelerating expansion B) Finding quantum gravity C) Proving string theory D) Detecting dark matter particles
A) LHCb B) T2K C) NA62 D) MoEDAL |