A) Oxygen B) Iron C) Helium D) Carbon
A) Triple-alpha process B) Electron capture C) CNO cycle
A) Black hole B) A and B C) Neutron star D) White dwarf
A) Formation of elements inside stars B) Formation of molecules in space C) Formation of galaxies D) Destruction of stars
A) Hydrogen B) Carbon C) Oxygen D) Helium
A) White dwarf B) Supernova C) Red giant D) Main sequence
A) Red giant B) Black hole C) Neutron star D) White dwarf
A) Carbon B) Helium C) All of the above D) Hydrogen
A) Atmosphere B) Corona C) Core D) Crust
A) Equal sharing of electrons B) Symmetrical shape C) Unequal sharing of electrons D) No dipole moment
A) CO₂ B) NH₃ C) H₂O D) HCl
A) Ionic B) Metallic C) Nonpolar D) Polar
A) Evolution Theory B) Big Bang Theory C) Creation Theory D) Star Formation Theory/Stellar nucleosynthesis
A) CCl4 B) XeF4 C) BF3 D) HCl
A) Generally high boiling point B) Boiling point cannot be determined C) Generally low boiling point D) Similar non-polar molecules
A) Polar molecules B) Metals C) Nonpolar molecules D) Ionic compounds
A) Benzene B) Methane C) Carbon tetrachloride D) Water
A) Dipole-dipole forces B) London dispersion forces C) Metallic bonding D) Ionic bonding
A) Supernova B) Main sequence C) Nebula D) Galaxy
A) Ionic forces B) Hydrogen bonding C) London dispersion forces D) Dipole-dipole
A) London forces B) Van der Waals C) Hydrogen bonding D) Dipole-dipole
A) Ionic attraction B) London forces C) Hydrogen bonding D) Dipole-dipole
A) Hydrogen bonding B) London dispersion forces C) Metallic bonding D) Dipole-dipole
A) Internal Mass Force of Atoms B) Inter-Molecular Fusion Attraction C) Intermolecular Forces of Attraction D) Intermetallic Forces of Attraction
A) Cl₂ B) CH₄ C) CO₂ D) H₂O
A) Any atom B) Highly electronegative atoms like N, O, F C) Metals only D) Carbon atoms
A) Na, K, Li B) C, H, P C) N, O, F D) Cl, Br, I
A) London dispersion forces, hydrogen bond, dipole-dipole B) London dispersion forces, dipole-dipole, hydrogen bond C) dipole-dipole, hydrogen bond, London dispersion forces D) dipole-dipole, London dispersion forces, hydrogen bond
A) H₂O B) NH₃ C) HF D) CH₄
A) Gases B) Liquids C) Solids D) Plasma
A) Amphipathic B) Polar C) Nonpolar D) Ionic
A) Achieving extremely high temperature and pressure B) Obtaining hydrogen gas C) Stopping gravity D) Finding helium atoms
A) It requires too much energy input B) Iron fusion releases energy C) Iron is unstable D) Iron has no isotopes
A) Accept, because it explains heavy elements. B) Reject, because no stars explode. C) Reject, because only massive stars undergo supernova explosions. D) Accept, because white dwarfs always explode.
A) Elements stay locked in the first stars. B) Heavy elements exist only in gas clouds. C) Elements cycle through star birth, death, and interstellar recycling. D) Only stars produce elements.
A) Incorrect, because London dispersion exists in all molecules. B) Correct, because polar molecules always have dipoles. C) Incorrect, because London forces form only in ions. D) Correct, because nonpolar molecules lack attractions.
A) London dispersion B) Dipole-dipole C) Hydrogen bonding D) Ion-dipole
A) NH₃ B) CH₄ C) CO₂ D) H₂
A) Ion-dipole B) London dispersion C) Dipole-dipole D) Hydrogen bonding only
A) Ionic bonds B) Molecules with weak London dispersion C) Strong hydrogen bonds D) Dipole-dipole only |