A) Function B) Language C) Relation
A) Sets B) Language C) Grammar
A) Powerful B) Equality C) Precise D) Concise
A) Precise B) Concise C) Powerful
A) Concise B) Precise C) Powerful
A) Concise B) Powerful C) Precise
A) Variables B) Functions C) Sets
A) Existential Statement B) Conditional Statement C) Universal Statement
A) Conditional Statement B) Existential Statement C) Universal Statement
A) Universal Statement B) Conditional Statement C) Existential Statement
A) Functions are not related to relations B) Each input relates to only one output C) Functions cannot be represented as ordered pairs
A) Can be counted B) Has a finite number of elements C) Cannot be counted
A) At least one element of a set B) All elements of a set C) Some elements of a set
A) Universal Statement B) Conditional Statement C) Existential Statement
A) If x is a dog, then x is a mammal B) There exists a prime number C) For all positive integers
A) Exactly the same elements B) Different elements C) Only one element in common
A) To decorate text B) To create music C) To communicate ideas
A) Equality, inequality, or membership B) Only quality C) Only membership
A) Variable B) Constant C) Numeral
A) {4,6} B) (1, 2, 3, 4, 6) C) {2}
A) Eliminate precision B) Overcomplicate information C) Convey complex ideas in shorter terms
A) Only the number 1 B) Whole numbers only C) Numbers like 2, 3, 5, 7, etc.
A) AUB B) A/B C) A=B
A) Each input relates to only one output B) Each input can relate to multiple outputs C) Functions are not related to relations
A) finite B) infinite
A) equivalent sets B) equal sets
A) infinite B) finite
A) equivalent set B) equal set
A) joint sets B) disjoint sets
A) disjoint sets B) joint set
A) Universal set B) Complement sets
A) empty sets B) no sets
A) Elements B) Function C) Domain |