A) Language B) Function C) Relation
A) Language B) Grammar C) Sets
A) Precise B) Equality C) Concise D) Powerful
A) Concise B) Powerful C) Precise
A) Precise B) Concise C) Powerful
A) Powerful B) Precise C) Concise
A) Functions B) Sets C) Variables
A) Existential Statement B) Conditional Statement C) Universal Statement
A) Existential Statement B) Universal Statement C) Conditional Statement
A) Existential Statement B) Universal Statement C) Conditional Statement
A) Functions cannot be represented as ordered pairs B) Each input relates to only one output C) Functions are not related to relations
A) Cannot be counted B) Has a finite number of elements C) Can be counted
A) At least one element of a set B) Some elements of a set C) All elements of a set
A) Existential Statement B) Universal Statement C) Conditional Statement
A) There exists a prime number B) For all positive integers C) If x is a dog, then x is a mammal
A) Different elements B) Exactly the same elements C) Only one element in common
A) To decorate text B) To create music C) To communicate ideas
A) Equality, inequality, or membership B) Only quality C) Only membership
A) Numeral B) Constant C) Variable
A) {4,6} B) (1, 2, 3, 4, 6) C) {2}
A) Eliminate precision B) Overcomplicate information C) Convey complex ideas in shorter terms
A) Whole numbers only B) Only the number 1 C) Numbers like 2, 3, 5, 7, etc.
A) AUB B) A/B C) A=B
A) Each input can relate to multiple outputs B) Functions are not related to relations C) Each input relates to only one output
A) finite B) infinite
A) equivalent sets B) equal sets
A) infinite B) finite
A) equivalent set B) equal set
A) joint sets B) disjoint sets
A) joint set B) disjoint sets
A) Complement sets B) Universal set
A) no sets B) empty sets
A) Domain B) Elements C) Function |