ThatQuiz Test Library Take this test now
LEE-FELIR (F)
Contributed by: Sonio
  • 1. What is the defining characteristic of the training data used in supervised learning?
A) The data is generated randomly by the algorithm.
B) The data is unlabeled, and the model must find patterns on its own.
C) The @data is labeled, meaning each example is paired with a target output.
D) The data is generated randomly by the algorithm.
  • 2. The primary goal of a supervised learning model is to:
A) Discover hidden patterns without any guidance.
B) Memorize the entire training dataset perfectly.
C) Gen@eralize from the training data to make accurate predictions on new, unseen data.
D) Reduce the dimensionality of the input data for visualization.
  • 3. In the analogy of a child learning from flashcards, the animal's name on the card represents what component of supervised learning?
A) The model's parameters.
B) The input features.
C) The loss function.
D) The@ label or target output.
  • 4. Which of the following tasks is a classic example of a classification problem?
A) Estimating the annual revenue of a company.
B) Diagnosing @a tumor as malignant or benign based on medical images.
C) Predicting the selling price of a house based on its features.
D) Forecasting the temperature for tomorrow.
  • 5. A model that predicts the continuous value of a stock price for the next day is solving a:
A) Regressio@n problem.
B) Dimensionality reduction problem.
C) Classification problem.
D) Clustering problem.
  • 6. What is the core objective of unsupervised learning?
A) To achieve perfect accuracy on a held-out test set.
B) To predict a target variable based on labeled examples.
C) To @discover the inherent structure, patterns, or relationships within unlabeled data.
D) To classify emails into spam and non-spam folders.
  • 7. In the analogy of a child grouping toys without instructions, the act of putting all the cars together is most similar to which unsupervised learning technique?
A) Reinforcement Learning.
B) Regression.
C) C@lustering.
D) Classification.
  • 8. Grouping customers based solely on their purchasing behavior, without pre-defined categories, is an application of:
A) Clu@stering, a type of unsupervised learning.
B) A support vector machine for classification.
C) Linear Regression, a type of supervised learning.
D) Logistic Regression, a type of supervised learning.
  • 9. The main goal of dimensionality reduction techniques like PCA is to:
A) Re@duce the number of features while preserving the most important information in the data.
B) Assign categorical labels to each data point.
C) Increase the number of features to improve model accuracy.
D) Predict a continuous output variable.
  • 10. Market basket analysis, which finds rules like "if chips then soda," is a classic example of:
A) Classification in supervised learning.
B) Regression in supervised learning.
C) Ass@ociation rule learning in unsupervised learning.
D) Deep learning with neural networks.
  • 11. Semi-supervised learning is particularly useful in real-world scenarios because:
A) La@beling data is often expensive and time-consuming, so it leverages a small labeled set with a large unlabeled set.
B) It is simpler to implement than unsupervised learning.
C) It is always more accurate than fully supervised learning.
D) It requires no labeled data at all.
  • 12. The fundamental question that a regression model aims to answer is:
A) "H@ow much?" or "How many?"
B) "What is the underlying group?"
C) "Which category?"
D) "Is this pattern anomalous?"
  • 13. The fundamental question that a classification model aims to answer is:
A) "What is the correlation between these variables?"
B) "How can I reduce the number of features?"
C) "How much?" or "How many?"
D) "Whic@h category?" or "What class?"
  • 14. Which algorithm is most directly designed for predicting a continuous target variable?
A) Decision Tree for classification
B) Logistic Regression
C) k-Nearest Neighbors for classification
D) Lin@ear Regression
  • 15. A model that uses patient data to assign a label of "High," "Medium," or "Low" risk for a disease is performing:
A) Mult@i-class classification
B) Regression
C) Clustering
D) Dimensionality reduction
  • 16. In a Decision Tree used for classification, what do the leaf nodes represent?
A) The average value of a continuous target
B) Th@e final class labels or decisions
C) The input features for a new data point
D) The probability of moving to the next node
  • 17. In a Regression Tree, what is typically represented at the leaf nodes?
A) A random number
B) A categorical class label
C) The name of the feature used for splitting
D) A c@ontinuous value, often the mean of the target values of the training instances that reach the leaf
  • 18. A key strength of Decision Trees is their:
A) Immunity to overfitting on noisy datasets
B) Inter@pretability; the model's decision-making process is easy to understand and visualize
C) Superior performance on all types of data compared to other algorithms
D) Guarantee to find the global optimum for any dataset
  • 19. The "kernel trick" used in Support Vector Machines (SVMs) allows them to:
A) Perform linear regression more efficiently
B) Initialize the weights of a neural network
C) Grow a tree structure by making sequential decisions
D) Fin@d a linear separating hyperplane in a high-dimensional feature space, even when the data is not linearly separable in the original space
  • 20. The "support vectors" in an SVM are the:
A) . Da@ta points that are closest to the decision boundary and most critical for defining the optimal hyperplane
B) The axes of the original feature space
C) All data points in the training set
D) The weights of a neural network layer
  • 21. When comparing Decision Trees and SVMs, a primary advantage of SVMs is:
A) Their inherent resistance to any form of overfitting
B) Their lower computational cost for very large datasets
C) Their superior interpretability and simplicity
D) The@ir effectiveness in high-dimensional spaces and their ability to model complex, non-linear decision boundaries
  • 22. The process in supervised learning where a model's parameters are adjusted to minimize the difference between its predictions and the true labels is called:
A) Dimensionality reduction
B) Data preprocessing
C) Tr@aining or model fitting
D) Clustering
  • 23. A key challenge in unsupervised learning is evaluating model performance because:
A) There@ are no ground truth labels to compare the results against
B) The data is always too small
C) The algorithms are not well-defined
D) The models are always less accurate than supervised models
  • 24. The task of reducing a 50-dimensional dataset to a 2-dimensional plot for visualization is best accomplished by:
A) An Association rule learning algorithm
B) A Classification algorithm like Logistic Regression
C) A Regression algorithm like Linear Regression
D) Dimen@sionality Reduction techniques like Principal Component Analysis (PCA)
  • 25. If an e-commerce company wants to automatically group its products into categories without any pre-existing labels, it should use:
A) Classification, a supervised learning method
B) Clus@tering, an unsupervised learning method
C) Regression, a supervised learning method
D) A neural network for image recognition
  • 26. The core building block of a neural network is a(n):
A) Principal component
B) Support vector
C) Decision node in a tree
D) Artifi@cial neuron or perceptron, which receives inputs, applies a transformation, and produces an output
  • 27. In a neural network, the function inside a neuron that determines its output based on the weighted sum of its inputs is called the:
A) Optimization algorithm
B) Activ@ation function
C) Kernel function
D) Loss function
  • 28. Which of the following is a non-linear activation function crucial for allowing neural networks to learn complex patterns?
A) The identity function (f(x) = x)
B) A constant function
C) The mean squared error function
D) Rectifie@d Linear Unit (ReLU)
  • 29. The process of "training" a neural network involves:
A) Manually setting the weights based on expert knowledge
B) Randomly assigning weights and never changing them
C) Clustering the input data
D) Iterativ@ely adjusting the weights and biases to minimize a loss function
  • 30. Backpropagation is the algorithm used in neural networks to:
A) Initialize the weights before training
B) Perform clustering on the output layer
C) Visualize the network's architecture
D) Efficient@ly calculate the gradient of the loss function with respect to all the weights in the network, enabling the use of gradient descent
  • 31. Deep Learning is a subfield of machine learning that primarily uses:
A) Decision trees with a single split
B) K-means clustering exclusively
C) Neural n@etworks with many layers (hence "deep")
D) Simple linear regression models
  • 32. A key advantage of deep neural networks over shallower models is their ability to:
A) Auto@matically learn hi@erarchical feature representations from data
B) Operate without any need for data preprocessing
C) Always train faster and with less data
D) Be perfectly interpretable, like a decision tree
  • 33. Convolutional Neural Networks (CNNs) are particularly well-suited for tasks involving:
A) Unsupervised clustering of audio signals
B) Text data and natural language processing
C) Image @data, due to their architecture which exploits spatial locality
D) Tabular data with many categorical features
  • 34. The "convolution" operation in a CNN is designed to:
A) Perform the final classification
B) Initialize the weights of the network
C) Detect@ local features (like edges or textures) in the input by applying a set of learnable filters
D) Flatten the input into a single vector
  • 35. Recurrent Neural Networks (RNNs) are designed to handle:
A) Sequ@ential data, like time series or text, due to their internal "memory" of previous inputs
B) Independent and identically distributed (IID) data points
C) Static, non-temporal data
D) Only image data
  • 36. The "vanishing gradient" problem in deep networks refers to:
A) The@ gradients becoming exceedingly small as they are backpropagated through many layers, which can halt learning in early layers
B) The loss function reaching a perfect value of zero
C) The model overfitting to the training data
D) The gradients becoming too large and causing numerical instability
  • 37. The "training set" is used to:
A) Fit th@e model's parameters (e.g., the weights in a neural network)
B) Deploy the model in a production environment
C) Provide an unbiased evaluation of a final model's performance
D) Tune the model's hyperparameters
  • 38. The "validation set" is primarily used for:
A) The final, unbiased assessment of the model's generalization error
B) The initial training of the model's weights
C) Tun@ing hyperparameters and making decisions about the model architecture during development
D) Data preprocessing and cleaning
  • 39. The "test set" should be:
A) Used repeatedly to tune the model's hyperparameters
B) Use@d only once, for a final evaluation of the model's performance on unseen data after model development is complete
C) Used repeatedly to tune the model's hyperparameters
D) Ignored in the machine learning pipeline
  • 40. Overfitting occurs when a model:
A) Fails to learn the underlying pattern in the training data
B) Learns @the training data too well, including its noise and outliers, and performs poorly on new, unseen data
C) Is evaluated using the training set instead of a test set
D) Is too simple to capture the trends in the data
  • 41. A common technique to reduce overfitting in neural networks is:
A) Increasing the model's capacity by adding more layers
B) Dropo@ut, which randomly ignores a subset of neurons during training
C) Using a smaller training dataset
D) Training for more epochs without any checks
  • 42. The "bias" of a model refers to:
A) The error from sensitivity to small fluctuations in the training set, leading to overfitting
B) The activation function used in the output layer
C) The erro@r from erroneous assumptions in the learning algorithm, leading to underfitting
D) The weights connecting the input layer to the hidden layer
  • 43. The "variance" of a model refers to:
A) The error from erroneous assumptions in the learning algorithm, leading to underfitting
B) The speed at which the model trains
C) The er@ror from sensitivity to small fluctuations in the training set, leading to overfitting
D) The intercept term in a linear regression model
  • 44. The "bias-variance tradeoff" implies that:
A) Decrea@sing bias will typically increase variance, and vice versa. The goal is to find a balance
B) Only bias is important for model performance
C) Bias and variance can be minimized to zero simultaneously
D) Only variance is important for model performance
  • 45. A learning curve that shows high training accuracy but low validation accuracy is a classic sign of:
A) A well-generalized model
B) Overf@itting
C) Perfect model performance
D) Underfitting
  • 46. In a neural network, the "loss function" (or cost function) measures:
A) The number of layers in the network
B) The speed of the backpropagation algorithm
C) The accuracy on the test set
D) How well the model is performing on the training data; it's the quantity we want to minimize during training
  • 47. Gradient Descent is an optimization algorithm that:
A) Is only used for unsupervised learning
B) Iteratively adjusts parameters in the direction that reduces the loss function
C) Guarantees finding the global minimum for any loss function
D) Randomly searches the parameter space for a good solution
  • 48. The "learning rate" in gradient descent controls:
A) The activation function for the output layer
B) The number of layers in a neural network
C) The size of the step taken during each parameter update. A rate that is too high can cause divergence, while one that is too low can make training slow
D) The amount of training data used in each epoch
  • 49. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) The final evaluation on the test set
C) One complete pass of the entire training dataset through the learning algorithm
D) A type of regularization technique
  • 50. "Batch Size" in neural network training refers to:
A) The number of validation examples
B) The number of layers in the network
C) The number of training examples used in one forward/backward pass before the model's parameters are updated
D) The total number of examples in the training set
  • 51. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 52. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 53. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) One complete pass of the entire training dataset through the learning algorithm
  • 54. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) One complete pass of the entire training dataset through the learning algorithm
  • 55. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 56. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 57. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 58. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 59. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 60. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
  • 61. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 62. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 63. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 64. "Epoch" in neural network training refers to:
A) The processing of a single training example
B) One complete pass of the entire training dataset through the learning algorithm
  • 65. "Epoch" in neural network training refers to:
A) One complete pass of the entire training dataset through the learning algorithm
B) The processing of a single training example
Created with That Quiz — a math test site for students of all grade levels.