Conceptes bàsics d'àlgebra (examen)
  • 1. Un monomi (de grau diferent a 0) és:
A) La suma d'un nombre i una única lletra.
B) El producte d'un nombre per una o més lletres.
C) Cap de les opcions és correcta.
D) El producte d'un nombre per una única lletra.
E) La suma d'un nombre i una o més lletres.
  • 2. Per regla general, els exponents de dos monomis es multipliquen:
A) Només quan multipliquem o sumem monomis.
B) Només quan sumem o resten els monomis.
C) Només quan multipliquem els monomis.
D) Només quan sumem els monomis.
E) Cap de les opcions és correcta.
  • 3. Un polinomi és:
A) El producte de diversos monomis no semblants.
B) La suma i/o resta de diversos monomis no semblants.
C) Cap de les opcions és correcta.
D) La suma i/o resta de diversos monomis semblants.
E) Un monomi molt gran.
  • 4. El grau d'un monomi ve donat per:
A) La suma del seu coeficient i els seus exponents.
B) L'exponent més gran de la seva part literal.
C) La suma dels seus coeficients.
D) La suma dels exponents de la seva part literal.
E) Cap de les opcions és correcta.
  • 5. El grau d'un polinomi ve donat per:
A) Cap de les opcions és correcta.
B) El grau del terme independent.
C) La suma de tots els seus exponents.
D) El major grau dels seus monomis.
E) El producte de tots els seus exponents.
  • 6. El coeficient d'un monomi és:
A) L'exponent de la seva lletra (o lletres).
B) La suma dels exponents de la seva part literal.
C) El nombre que es suma a la part literal.
D) El nombre que multiplica a la part literal.
E) El nombre de lletres que té el monomi.
  • 7. El nombre que multiplica la part literal s'anomena:
A) Part numèrica.
B) Exponent.
C) Monomi.
D) Coeficient.
E) Cap de les opcions és correcta.
  • 8. La part literal d'un monomi és:
A) La suma de les seves variables.
B) El producte dels exponents de les seves variables.
C) Cap de les opcions és correcta.
D) El producte de les seves variables, sense tenir en compte els seus exponents.
E) El conjunt de les seves lletres i els seus corresponents exponents.
  • 9. Els exponents de dos monomis semblants es sumen:
A) De la mateixa manera que quan sumem monomis no semblants.
B) Quan sumem els monomis.
C) Cap de les opcions és correcta.
D) No es pot fer això. Els exponents es sumen només quans els monomis són no semblants.
E) Quan multipliquem els monomis.
  • 10. Els exponents de dos monomis semblants es resten:
A) Quan dividim els monomis.
B) Cap de les opcions és correcta.
C) Quan sumem els monomis.
D) Quan multipliquem els monomis.
E) Quan restem els monomis.
  • 11. El conjunt de lletres d'un monomi s'anomena:
A) Part literària.
B) Conjunt literari.
C) Part literal.
D) Conjunt literal.
E) No rep cap nom.
  • 12. Si un polinomi està format per 3 monomis: un de grau 4, un altre de grau 3, i un darrer de grau 2; quin grau té el polinomi?
A) Depèn de quin siguin els seus coeficients.
B) Té grau 4, perquè el grau d'un polinomi correspon al del monomi de major grau.
C) Té grau 9, perquè cal sumar tots els exponents (4+3+2=9).
D) Cap de les opcions és correcta.
E) Té grau 24, perquè cal multiplicar tots els exponents (4·3·2=24).
  • 13. A l'hora de multiplicar monomis:
A) No és imprescindible que els monomis siguin semblants.
B) És imprescindible que els monomis tinguin diferent grau.
C) És imprescindible que els monomis siguin no semblants.
D) És imprescindible que els monomis siguin semblants.
E) És imprescindible que els monomis tinguin el mateix grau.
  • 14. A l'hora de sumar monomis semblants:
A) Cap de les opcions és correcta.
B) Sumem els coeficients i multipliquem els exponents.
C) Multipliquem els coeficients i sumem els exponents.
D) Sumem només els exponents.
E) Sumem els coeficients i els exponents.
  • 15. A l'hora de restar monomis semblants:
A) Restem només els coeficients, de manera que el resultat és un monomi de grau inferior als monomis que hem restat.
B) Restem només els exponents, de manera que el resultat és un monomi de grau inferior als monomis que hem restat.
C) Restem els coeficients i els exponents, de manera que el resultat és un monomi amb idèntica part literal que els monomis que hem restat.
D) Restem només els coeficients, de manera que el resultat és un monomi amb idèntica part literal que els monomis que hem restat.
E) Cap de les opcions és correcta.
  • 16. Dos monomis són semblants quan:
A) Tenen les mateixes variables.
B) Els seus exponents són iguals.
C) Les seves parts literals són idèntiques.
D) Cap de les opcions és correcta.
E) Els seus coeficients són iguals.
  • 17. Podrem sumar dos monomis:
A) Cap de les opcions és correcta.
B) Només si els monomis són semblants.
C) Mai, ja siguin monomis semblants o no semblants.
D) Només si els monomis són no semblants.
E) Sempre, ja siguin monomis semblants o no semblants.
  • 18. Els coeficients de dos monomis es multipliquen:
A) Només si els monomis són no semblants.
B) Cap de les opcions és correcta.
C) Sempre que multipliquem monomis, siguin o no semblants.
D) Això no pot passar mai.
E) Només si els monomis són semblants.
  • 19. Podrem restar dos monomis:
A) Només si els monomis són no semblants.
B) Cap de les opcions és correcta.
C) Mai, ja siguin monomis semblants o no semblants.
D) Sempre, ja siguin monomis semblants o no semblants.
E) Sempre que els monomis tinguin el mateix grau.
  • 20. Un monomi només està format per:
A) Coeficient i exponent(s).
B) Coeficient i part literal.
C) Cap de les opcions és correcta.
D) Exponent(s) i part literal.
E) Variable(s) i exponent(s).
  • 21. El coeficient d'un monomi:
A) S'anomena part numèrica.
B) Pot ser un nombre possitiu o negatiu.
C) Només pot ser un nombre possitiu.
D) És igual a zero si davant de la part literal no hi ha cap nombre.
E) Determina el grau del monomi.
  • 22. La lletra d'un monomi:
A) Correspon a la base d'una potència.
B) Té exponent igual a 1 en els termes independents.
C) Té exponent igual a zero si no es veu cap exponent a la dreta de la lletra.
D) Cap de les opcions és correcta.
E) Sempre s'escriu en majúscules.
  • 23. Cadascuna de les lletres d'una expressió algebraica s'anomena:
A) Interrogant.
B) No rep cap nom.
C) Cap de les opcions és correcta.
D) Variable.
E) Lletra, tal qual.
  • 24. El terme independent és:
A) Un monomi de grau diferent de zero.
B) Un monomi format per un coeficient igual a 1 multiplicat per una lletra.
C) Cap de les opcions és correcta.
D) Un monomi de coeficient igual a zero.
E) Un monomi sense cap lletra visible.
  • 25. Els exponents de dos monomis es divideixen:
A) Quan dividim els monomis.
B) Quan restem els monomis.
C) Cap de les opcions és correcta.
D) Quan dividim o restem monomis.
E) Mai es poden dividir.
  • 26. Un polinomi reduït pot estar format per:
A) dos o més monomis semblants.
B) dos o més monomis no semblants.
C) un o més monomis no semblants.
D) un o més monomis semblants.
E) únicament per dos o per tres monomis (semblants o no).
  • 27. Reduir termes a un polinomi consisteix a:
A) multiplicar tots els termes, de manera que només quedi un únic monomi.
B) Cap de les opcions és correcta.
C) eliminar el terme independent.
D) agrupar els termes no semblants.
E) agrupar els termes semblants.
  • 28. A una Identitat Notable sempre intervenen:
A) Dos trinomis
B) Dos binomis
C) Totes les respostes són correctes
D) Un únic binomi.
E) Dos polinomis
  • 29. A l'hora de resoldre el quadrat d'un binomi-suma fem servir la frase:
A) el quadrat del 1r monomi més el quadrat del 2n
B) el quadrat del 1r monomi, més el doble del 1r pel 2n al quadrat, més el quadrat del 2n
C) el quadrat del 1r monomi, més el quadrat del 2n, més el doble del 1r pel 2n
D) el quadrat del 1r monomi, més el doble del 2n, més el quadrat del 1r pel 2n
E) el doble del 1r monomi, més el quadrat del 2n, més el doble del 1r pel 2n
  • 30. A l'hora de resoldre un producte de binomis (concretament, una suma per diferència) fem servir la frase:
A) el quadrat del 1r monomi menys el quadrat del 2n monomi
B) el doble del 1r monomi menys el doble del 2n monomi
C) el quadrat del 1r monomi menys el 2n monomi
D) el doble del 1r monomi menys el quadrat del 2n monomi
E) el quadrat del 1r monomi menys el doble del 2n monomi
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.