Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) 3x4 – 5x – 7
B) Cap de totes
C) -13x2 + 5x +7
D) x2 – 5x – 7
E) –2x3 – 13x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) 12x3 - 3x2 + 6x
B) –12x6 + 3x4 – 6x
C) –12x3 + 9x2 – 6x
D) –12x3 + 3x2 – 6x
E) Cap de totes
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 6x2 + 10x – 9
B) Cap de totes
C) 2x3 – 3x2 + 5x – 3
D) 2x3 – 3x4 + 5x2 – 3
E) 2x3 – -3x2 - 5x + 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) Cap de totes
C) 6x3 - 8x2
D) –1–6x6 + 8x4
E) –12x3 + 16x2
  • 5. 6x2 – 7x2 + 3x2
A) -2x2
B) Cap de totes
C) 2x4
D) 2x6
E) 2x2
  • 6. Per a sumar Monomis
A) Tenen que ser semblats
B) Mai es poden sumar
C) Sols si coincideix del coeficient
D) Es poden sumar tots
E) Sols es multipliquen
  • 7. Per a multiplicar Monomis
A) Sols es poden sumar
B) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
C) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
D) Tenen que ser semblats
E) Mai es poden multiplicar
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix exponent
B) Quan son inversos
C) Quan tenen identica part literal
D) Quan tenen el mateix coeficien
E) Quan tenen el mateix signe
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.