Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) 3x4 – 5x – 7
B) Cap de totes
C) –2x3 – 13x2 – 5x – 7
D) -13x2 + 5x +7
E) x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) Cap de totes
B) 12x3 - 3x2 + 6x
C) –12x3 + 9x2 – 6x
D) –12x3 + 3x2 – 6x
E) –12x6 + 3x4 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x4 + 5x2 – 3
B) 2x3 – -3x2 - 5x + 3
C) Cap de totes
D) 2x3 – 3x2 + 5x – 3
E) 2x3 – 6x2 + 10x – 9
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) –12x3 + 16x2
C) 6x3 - 8x2
D) Cap de totes
E) –1–6x6 + 8x4
  • 5. 6x2 – 7x2 + 3x2
A) 2x4
B) Cap de totes
C) 2x6
D) 2x2
E) -2x2
  • 6. Per a sumar Monomis
A) Mai es poden sumar
B) Sols es multipliquen
C) Es poden sumar tots
D) Sols si coincideix del coeficient
E) Tenen que ser semblats
  • 7. Per a multiplicar Monomis
A) Tenen que ser semblats
B) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
C) Mai es poden multiplicar
D) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
E) Sols es poden sumar
  • 8. Dos monomis son Semblats
A) Quan tenen identica part literal
B) Quan son inversos
C) Quan tenen el mateix coeficien
D) Quan tenen el mateix exponent
E) Quan tenen el mateix signe
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.